Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 590 Accesses

Abstract

The quantum Rabi model (QRM) is among the most fundamental models in quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this sense, by analogy with the Ehrenfest classification of phase transitions, we could refer to this QPT as second order. However, we will continue using the term continuous phase transitions as explained in the Introduction.

References

  1. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997)

    Book  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000)

    MATH  Google Scholar 

  3. I.I. Rabi, On the process of space quantization. Phys. Rev. 49, 324 (1936). https://doi.org/10.1103/PhysRev.49.324

    Article  ADS  Google Scholar 

  4. I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652 (1937). https://doi.org/10.1103/PhysRev.51.652

    Article  ADS  Google Scholar 

  5. I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch, A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938). https://doi.org/10.1103/PhysRev.53.318

    Article  ADS  Google Scholar 

  6. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963). https://doi.org/10.1109/PROC.1963.1664

    Article  Google Scholar 

  7. D. Braak, Q.-H. Chen, M.T. Batchelor, E. Solano, Semi-classical and quantum Rabi models: in celebration of 80 years. J. Phys. A Math. Theor. 49, 300301 (2016), http://stacks.iop.org/1751-8121/49/i=30/a=300301

    Article  MathSciNet  Google Scholar 

  8. S. Haroche, Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85, 1083 (2013). https://doi.org/10.1103/RevModPhys.85.1083

    Article  ADS  MathSciNet  Google Scholar 

  9. D.J. Wineland, Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103 (2013). https://doi.org/10.1103/RevModPhys.85.1103

    Article  ADS  Google Scholar 

  10. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  11. G. Rempe, H. Walther, N. Klein, Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353 (1987). https://doi.org/10.1103/PhysRevLett.58.353

    Article  ADS  Google Scholar 

  12. C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, A "Schrödinger cat" superposition state of an atom. Science 272, 1131 (1996). https://doi.org/10.1126/science.272.5265.1131

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Sachdev, Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, UK, 2011)

    Book  Google Scholar 

  14. L.D. Carr (ed.), Understanding Quantum Phase Transitions (CRC Press, 2010)

    Google Scholar 

  15. M. Vojta, Quantum phase transitions. Rep. Prog. Phys. 66, 2069 (2003), http://stacks.iop.org/0034-4885/66/i=12/a=R01

    Article  ADS  MathSciNet  Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 1980)

    MATH  Google Scholar 

  17. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971)

    Google Scholar 

  18. H.E. Stanley, Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358 (1999). https://doi.org/10.1103/RevModPhys.71.S358

    Article  ADS  Google Scholar 

  19. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99

    Article  ADS  Google Scholar 

  20. H. Lipkin, N. Meshkov, A. Glick, Validity of many-body approximation methods for a solvable model. Nucl. Phys. 62, 188 (1965). https://doi.org/10.1016/0029-5582(65)90862-X

    Article  ADS  MathSciNet  Google Scholar 

  21. J.G. Brankov, Introduction to Finite-Size Scaling (Leuven University Press, Leuven, 1996)

    Google Scholar 

  22. M.E. Fisher, M.N. Barber, Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 28, 1516 (1972). https://doi.org/10.1103/PhysRevLett.28.1516

    Article  ADS  Google Scholar 

  23. W.D. Heiss, M. Müller, Universal relationship between a quantum phase transition and instability points of classical systems. Phys. Rev. E 66, 016217 (2002). https://doi.org/10.1103/PhysRevE.66.016217

  24. F. Leyvraz, W.D. Heiss, Large-\(N\) scaling behavior of the Lipkin-Meshkov-Glick model. Phys. Rev. Lett. 95, 050402 (2005). https://doi.org/10.1103/PhysRevLett.95.050402

  25. P. Cejnar, M. Macek, S. Heinze, J. Jolie, J. Dobeš, Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei. J. Phys. A: Math. Theor. 39, L515 (2006), http://stacks.iop.org/0305-4470/39/i=31/a=L01

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Cejnar, P. Stránský, Impact of quantum phase transitions on excited-level dynamics Phys. Rev. E 78, 031130 (2008). https://doi.org/10.1103/PhysRevE.78.031130

  27. M.  Caprio, P.  Cejnar, F.  Iachello, Excited state quantum phase transitions in many-body systems. Ann. Phys. (N. Y.) 323, 1106 (2008). https://doi.org/10.1016/j.aop.2007.06.011

    Article  ADS  Google Scholar 

  28. P.  Stránský, M.  Macek, P.  Cejnar, Excited-state quantum phase transitions in systems with two degrees of freedom: level density, level dynamics, thermal properties. Ann. Phys. (N. Y.) 345, 73 (2014). https://doi.org/10.1016/j.aop.2014.03.006

    Article  ADS  Google Scholar 

  29. P.  Stránský, M.  Macek, A.  Leviatan, P.  Cejnar, Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects. Ann. Phys. (N. Y.) 356, 57 (2015). https://doi.org/10.1016/j.aop.2015.02.025

    Article  ADS  MathSciNet  Google Scholar 

  30. M.-J. Hwang, R. Puebla, M.B. Plenio, Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett. 115, 180404 (2015). https://doi.org/10.1103/PhysRevLett.115.180404

  31. R. Puebla, M.-J. Hwang, M.B. Plenio, Excited-state quantum phase transition in the Rabi model. Phys. Rev. A 94, 023835 (2016). https://doi.org/10.1103/PhysRevA.94.023835

  32. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, England, 2004)

    Book  Google Scholar 

  33. D.F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, Berlin, Heidelberg, 2008)

    Book  Google Scholar 

  34. F. Beaudoin, J.M. Gambetta, A. Blais, Dissipation and ultrastrong coupling in circuit QED. Phys. Rev. A 84, 043832 (2011). https://doi.org/10.1103/PhysRevA.84.043832

  35. D.Z. Rossatto, C.J. Villas-Bôas, M. Sanz, E. Solano, Spectral classification of coupling regimes in the quantum Rabi model. Phys. Rev. A 96, 013849 (2017). https://doi.org/10.1103/PhysRevA.96.013849

  36. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Observation of the Bloch-Siegert Shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010). https://doi.org/10.1103/PhysRevLett.105.237001

  37. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hummer, E. Solano, A. Marx, R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010). https://doi.org/10.1038/nphys1730

    Article  ADS  Google Scholar 

  38. J. Casanova, G. Romero, I. Lizuain, J.J. García-Ripoll, E. Solano, Deep strong coupling regime of the Jaynes-Cummings model. Phys. Rev. Lett. 105, 263603 (2010). https://doi.org/10.1103/PhysRevLett.105.263603

  39. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44 (2017). https://doi.org/10.1038/nphys3906

    Article  ADS  Google Scholar 

  40. P. Forn-Diaz, J.J. Garcia-Ripoll, B. Peropadre, J.-L. Orgiazzi, M.A. Yurtalan, R. Belyansky, C.M. Wilson, A. Lupascu, Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime. Nat. Phys. 13, 39 (2017). https://doi.org/10.1038/nphys3905

    Article  ADS  Google Scholar 

  41. D. Braak, Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401 (2011). https://doi.org/10.1103/PhysRevLett.107.100401

    Article  ADS  Google Scholar 

  42. E. Solano, The dialogue between quantum light and matter. Physics 4, 68 (2011). https://doi.org/10.1103/Physics.4.68

    Article  Google Scholar 

  43. M.T. Batchelor, H.-Q. Zhou, Integrability versus exact solvability in the quantum Rabi and Dicke models. Phys. Rev. A 91, 053808 (2015). https://doi.org/10.1103/PhysRevA.91.053808

    Article  ADS  Google Scholar 

  44. A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987). https://doi.org/10.1103/RevModPhys.59.1

    Article  ADS  Google Scholar 

  45. U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  46. K.  Hepp, E.H. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model. Ann. Phys. (N. Y.) 76, 360 (1973). https://doi.org/10.1016/0003-4916(73)90039-0

    Article  ADS  MathSciNet  Google Scholar 

  47. Y.K. Wang, F.T. Hioe, Phase transition in the Dicke model of superradiance. Phys. Rev. A 7, 831 (1973). https://doi.org/10.1103/PhysRevA.7.831

    Article  ADS  Google Scholar 

  48. C. Emary, T. Brandes, Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model. Phys. Rev. Lett. 90, 044101 (2003a). https://doi.org/10.1103/PhysRevLett.90.044101

    Article  ADS  Google Scholar 

  49. C. Emary, T. Brandes, Chaos and the quantum phase transition in the Dicke model. Phys. Rev. E 67, 066203 (2003b). https://doi.org/10.1103/PhysRevE.67.066203

    Article  ADS  MathSciNet  Google Scholar 

  50. K.L. Hur, Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system. Ann. Phys. (N. Y.) 323, 2208 (2008). https://doi.org/10.1016/j.aop.2007.12.003

    Article  ADS  Google Scholar 

  51. G. Levine, V.N. Muthukumar, Entanglement of a qubit with a single oscillator mode. Phys. Rev. B 69, 113203 (2004). https://doi.org/10.1103/PhysRevB.69.113203

    Article  ADS  Google Scholar 

  52. A.P. Hines, C.M. Dawson, R.H. McKenzie, G.J. Milburn, Entanglement and bifurcations in Jahn-Teller models. Phys. Rev. A 70, 022303 (2004). https://doi.org/10.1103/PhysRevA.70.022303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S. Ashhab, F. Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010). https://doi.org/10.1103/PhysRevA.81.042311

    Article  ADS  Google Scholar 

  54. L. Bakemeier, A. Alvermann, H. Fehske, Quantum phase transition in the Dicke model with critical and noncritical entanglement. Phys. Rev. A 85, 043821 (2012). https://doi.org/10.1103/PhysRevA.85.043821

    Article  ADS  Google Scholar 

  55. S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator. Phys. Rev. A 87, 013826 (2013). https://doi.org/10.1103/PhysRevA.87.013826

    Article  ADS  Google Scholar 

  56. J.R. Schrieffer, P.A. Wolff, Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491 (1966). https://doi.org/10.1103/PhysRev.149.491

    Article  ADS  Google Scholar 

  57. S.  Bravyi, D.P. DiVincenzo, D.  Loss, Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. (N. Y.) 326, 2793 (2011). https://doi.org/10.1016/j.aop.2011.06.004

    Article  ADS  MathSciNet  Google Scholar 

  58. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, Heidelberg, 1980)

    MATH  Google Scholar 

  59. T.J. Osborne, M.A. Nielsen, Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002). https://doi.org/10.1103/PhysRevA.66.032110

    Article  ADS  MathSciNet  Google Scholar 

  60. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). https://doi.org/10.1103/PhysRevLett.90.227902

    Article  ADS  Google Scholar 

  61. N. Lambert, C. Emary, T. Brandes, Entanglement and the phase transition in single-mode superradiance. Phys. Rev. Lett. 92, 073602 (2004). https://doi.org/10.1103/PhysRevLett.92.073602

    Article  ADS  Google Scholar 

  62. N. Lambert, C. Emary, T. Brandes, Entanglement and entropy in a spin-boson quantum phase transition. Phys. Rev. A 71, 053804 (2005). https://doi.org/10.1103/PhysRevA.71.053804

    Article  ADS  Google Scholar 

  63. J. Vidal, S. Dusuel, T. Barthel, Entanglement entropy in collective models. J. Stat. Mech. 2007, P01015 (2007), http://stacks.iop.org/1742-5468/2007/i=01/a=P01015

  64. L. Lepori, G. De Chiara, A. Sanpera, Scaling of the entanglement spectrum near quantum phase transitions. Phys. Rev. B 87, 235107 (2013). https://doi.org/10.1103/PhysRevB.87.235107

    Article  ADS  Google Scholar 

  65. P. Zanardi, N. Paunković, Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006). https://doi.org/10.1103/PhysRevE.74.031123

    Article  ADS  MathSciNet  Google Scholar 

  66. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1989)

    MATH  Google Scholar 

  67. U.C. Taeuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-equilibrium Scaling Behavior (Cambridge University Press, Cambridge, UK, 2014)

    Google Scholar 

  68. P. Ribeiro, J. Vidal, R. Mosseri, Thermodynamical limit of the Lipkin-Meshkov-Glick model. Phys. Rev. Lett. 99, 050402 (2007). https://doi.org/10.1103/PhysRevLett.99.050402

    Article  ADS  Google Scholar 

  69. P. Ribeiro, J. Vidal, R. Mosseri, Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. Phys. Rev. E 78, 021106 (2008). https://doi.org/10.1103/PhysRevE.78.021106

    Article  ADS  Google Scholar 

  70. R. Botet, R. Jullien, P. Pfeuty, Size scaling for infinitely coordinated systems. Phys. Rev. Lett. 49, 478 (1982). https://doi.org/10.1103/PhysRevLett.49.478

    Article  ADS  Google Scholar 

  71. R. Botet, R. Jullien, Large-size critical behavior of infinitely coordinated systems. Phys. Rev. B 28, 3955 (1983). https://doi.org/10.1103/PhysRevB.28.3955

    Article  ADS  Google Scholar 

  72. S. Dusuel, J. Vidal, Finite-size scaling exponents of the Lipkin-Meshkov-Glick model. Phys. Rev. Lett. 93, 237204 (2004). https://doi.org/10.1103/PhysRevLett.93.237204

    Article  ADS  Google Scholar 

  73. S. Dusuel, J. Vidal, Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model. Phys. Rev. B 71, 224420 (2005). https://doi.org/10.1103/PhysRevB.71.224420

    Article  ADS  Google Scholar 

  74. J. Vidal, S. Dusuel, Finite-size scaling exponents in the Dicke model. Europhys. Lett. 74, 817 (2006), http://stacks.iop.org/0295-5075/74/i=5/a=817

    Article  ADS  Google Scholar 

  75. J. Larson, E.K. Irish, Some remarks on “superradiant” phase transitions in light-matter systems. J. Phys. A Math. Theo. 50, 174002 (2017), http://stacks.iop.org/1751-8121/50/i=17/a=174002

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Relaño, J.M. Arias, J. Dukelsky, J.E. García-Ramos, P. Pérez-Fernández, Decoherence as a signature of an excited-state quantum phase transition. Phys. Rev. A 78, 060102 (2008). https://doi.org/10.1103/PhysRevA.78.060102

    Article  ADS  Google Scholar 

  77. P. Pérez-Fernández, P. Cejnar, J.M. Arias, J. Dukelsky, J.E. García-Ramos, A. Relaño, Quantum quench influenced by an excited-state phase transition. Phys. Rev. A 83, 033802 (2011). https://doi.org/10.1103/PhysRevA.83.033802

    Article  ADS  Google Scholar 

  78. A. Relaño, J. Dukelsky, P. Pérez-Fernández, J.M. Arias, Quantum phase transitions of atom-molecule Bose mixtures in a double-well potential. Phys. Rev. E 90, 042139 (2014). https://doi.org/10.1103/PhysRevE.90.042139

    Article  ADS  Google Scholar 

  79. T. Brandes, Excited-state quantum phase transitions in Dicke superradiance models. Phys. Rev. E 88, 032133 (2013). https://doi.org/10.1103/PhysRevE.88.032133

    Article  ADS  Google Scholar 

  80. M.A. Bastarrachea-Magnani, S. Lerma-Hernández, J.G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems. I. Density of states and excited-state quantum phase transitions. Phys. Rev. A 89, 032101 (2014). https://doi.org/10.1103/PhysRevA.89.032101

    Article  ADS  Google Scholar 

  81. B. Dietz, F. Iachello, M. Miski-Oglu, N. Pietralla, A. Richter, L. von Smekal, J. Wambach, Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards. Phys. Rev. B 88, 104101 (2013). https://doi.org/10.1103/PhysRevB.88.104101

    Article  ADS  Google Scholar 

  82. F. Iachello, B. Dietz, M. Miski-Oglu, A. Richter, Algebraic theory of crystal vibrations: singularities and zeros in vibrations of one- and two-dimensional lattices. Phys. Rev. B 91, 214307 (2015). https://doi.org/10.1103/PhysRevB.91.214307

    Article  ADS  Google Scholar 

  83. Z.-G. Yuan, P. Zhang, S.-S. Li, J. Jing, L.-B. Kong, Scaling of the Berry phase close to the excited-state quantum phase transition in the Lipkin model. Phys. Rev. A 85, 044102 (2012). https://doi.org/10.1103/PhysRevA.85.044102

    Article  ADS  Google Scholar 

  84. R. Puebla, A. Relaño, Non-thermal excited-state quantum phase transitions. Europhys. Lett. 104, 50007 (2013), http://stacks.iop.org/0295-5075/104/i=5/a=50007

    Article  Google Scholar 

  85. R. Puebla, A. Relaño, J. Retamosa, Excited-state phase transition leading to symmetry-breaking steady states in the Dicke model. Phys. Rev. A 87, 023819 (2013). https://doi.org/10.1103/PhysRevA.87.023819

    Article  ADS  Google Scholar 

  86. W. Kopylov, T. Brandes, Time delayed control of excited state quantum phase transitions in the Lipkin-Meshkov-Glick model. New J. Phys. 17, 103031 (2015), http://stacks.iop.org/1367-2630/17/i=10/a=103031

    Article  ADS  Google Scholar 

  87. L.F. Santos, F. Pérez-Bernal, Structure of eigenstates and quench dynamics at an excited-state quantum phase transition. Phys. Rev. A 92, 050101 (2015). https://doi.org/10.1103/PhysRevA.92.050101

    Article  ADS  Google Scholar 

  88. R. Puebla, A. Relaño, Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model. Phys. Rev. E 92, 012101 (2015). https://doi.org/10.1103/PhysRevE.92.012101

    Article  ADS  MathSciNet  Google Scholar 

  89. G. Engelhardt, V.M. Bastidas, W. Kopylov, T. Brandes, Excited-state quantum phase transitions and periodic dynamics. Phys. Rev. A 91, 013631 (2015). https://doi.org/10.1103/PhysRevA.91.013631

    Article  ADS  MathSciNet  Google Scholar 

  90. C.M. Lóbez, A. Relaño, Entropy, chaos, and excited-state quantum phase transitions in the Dicke model. Phys. Rev. E 94, 012140 (2016). https://doi.org/10.1103/PhysRevE.94.012140

    Article  ADS  Google Scholar 

  91. M.-J. Hwang, M.-S. Choi, Variational study of a two-level system coupled to a harmonic oscillator in an ultrastrong-coupling regime. Phys. Rev. A 82, 025802 (2010). https://doi.org/10.1103/PhysRevA.82.025802

    Article  ADS  Google Scholar 

  92. A. Messiah, Quantum Mechanics (Dover Publications, New York, 1961)

    MATH  Google Scholar 

  93. M.  Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, 1997)

    Google Scholar 

  94. A. Relaño, M.A. Bastarrachea-Magnani, S. Lerma-Hernández, Approximated integrability of the Dicke model. Europhys. Lett. 116, 50005 (2016), http://stacks.iop.org/0295-5075/116/i=5/a=50005

    Article  ADS  Google Scholar 

  95. M.-J. Hwang, M.B. Plenio, Quantum phase transition in the finite Jaynes-Cummings lattice systems. Phys. Rev. Lett. 117, 123602 (2016). https://doi.org/10.1103/PhysRevLett.117.123602

    Article  ADS  Google Scholar 

  96. M.-J. Hwang, P. Rabl, M.B. Plenio, Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A 97, 013825 (2018). https://doi.org/10.1103/PhysRevA.97.013825

    Article  ADS  Google Scholar 

  97. E.G. Dalla Torre, E. Demler, T. Giamarchi, E. Altman, Quantum critical states and phase transitions in the presence of non-equilibrium noise. Nat. Phys. 6, 806 (2010). https://doi.org/10.1038/nphys1754

    Article  Google Scholar 

  98. D. Nagy, P. Domokos, Critical exponent of quantum phase transitions driven by colored noise. Phys. Rev. A 94, 063862 (2016). https://doi.org/10.1103/PhysRevA.94.063862

    Article  ADS  Google Scholar 

  99. S. Genway, W. Li, C. Ates, B.P. Lanyon, I. Lesanovsky, Generalized Dicke nonequilibrium dynamics in trapped ions. Phys. Rev. Lett. 112, 023603 (2014). https://doi.org/10.1103/PhysRevLett.112.023603

    Article  ADS  Google Scholar 

  100. P. Kirton, J. Keeling, Suppressing and restoring the Dicke superradiance transition by dephasing and decay. Phys. Rev. Lett. 118, 123602 (2017). https://doi.org/10.1103/PhysRevLett.118.123602

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Puebla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puebla, R. (2018). Quantum Rabi Model: Equilibrium. In: Equilibrium and Nonequilibrium Aspects of Phase Transitions in Quantum Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00653-2_3

Download citation

Publish with us

Policies and ethics