Skip to main content

Analysis

  • Chapter
  • First Online:
  • 183 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The following chapter describes the analysis of the electron and muon channel. First all MC samples used for the analysis are discussed in Sect. 9.1. The data used and the event and lepton selection criteria are discussed in Sect. 9.2. The determination and validation of the multijet background is discussed in Sect. 9.3 and the extrapolation of the MC and multijet background towards high transverse mass is presented in Sect. 9.4. The systematic uncertainties on the background estimation are discussed in Sect. 9.5. Finally, the selected data are compared to the Standard Model background expectation in Sect. 9.6.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The PDF4LHC prescription for calculating the PDF uncertainties is to take the envelope of the uncertainties from the MSTW2008 68% CL NNLO, CT10 NNLO and NNPDF2.3 5f FFN PDF sets.

  2. 2.

    The Good Runs List used in this analysis is: data15_13TeV.periodAllYear_DetStatus-v73-pro19-08_DQDefects-00-01-02_PHYS_StandardGRL_All_Good_25ns.xml.

  3. 3.

    e24_lhmedium_L1EM20VH or e60_lhmedium or e120_lhloose.

  4. 4.

    The isolation requires the energy in the hadronic calorimeter in \(2\times 2\) cells behind the energy deposition in the electromagnetic calorimeter to be less than \(20{\mathrm {\,GeV}}-22{\mathrm {\,GeV}}\) (depending on the region in \(\eta \)).

  5. 5.

    Tight.

  6. 6.

    Medium.

  7. 7.

    Jets can also contain neutrinos from heavy-flavor decays, but this is not expected to be the dominant background in this case.

References

  1. ATLAS Physics Modeling Group. https://twiki.cern.ch/twiki/bin/view/AtlasProtected/PhysicsModellingGroup (Internal documentation)

  2. Sjostrand T, Mrenna S, Skands PZ (2008) A brief introduction to PYTHIA 8.1. Comput Phys Commun 178:852. https://doi.org/10.1016/j.cpc.2008.01.036, arXiv: 0710.3820 [hep-ph]

    Article  ADS  Google Scholar 

  3. Ball RD et al (2013) Parton distributions with LHC data. Nucl Phys B867:244–289. https://doi.org/10.1016/j.nuclphysb.2012.10.003, arXiv: 1207.1303 [hep-ph]

    Article  ADS  Google Scholar 

  4. Uta Klein. https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HigherOrderCorrections2015 (Internal documentation)

  5. Anastasiou C, Dixon L, Melnikov K, Petriello F (2004) High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys Rev D69:094008. https://doi.org/10.1103/PhysRevD.69.094008, arXiv: hep-ph/0312266 [hep-ph]

  6. Dulat S et al (2016) The CT14 global analysis of quantum chromodynamics. Phys Rev D93:033006. https://doi.org/10.1103/PhysRevD.93.033006, arXiv: 1506.07443 [hep-ph]

  7. Alioli S, Nason P, Oleari C, Re E (2010) A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06:043. https://doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581 [hep-ph]

  8. Lai H-L et al (2010) New parton distributions for collider physics. Phys Rev D82:074024. https://doi.org/10.1103/PhysRevD.82.074024, arXiv: 1007.2241 [hep-ph]

  9. Golonka P, Was Z (2006) PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur Phys J C45:97. https://doi.org/10.1140/epjc/s2005-02396-4, arXiv: hep-ph/0506026

    Article  ADS  Google Scholar 

  10. Bardin D et al (2012) SANC integrator in the progress: QCD and EW contributions. JETP Lett 96:285–289. https://doi.org/10.1134/S002136401217002X, arXiv: 1207.4400 [hep-ph]

    Article  ADS  Google Scholar 

  11. Bondarenko SG, Sapronov AA (2013) NLO EW and QCD proton-proton cross section calculations with mcsanc-v1.01. Comput Phys Commun 184:2343–2350. https://doi.org/10.1016/j.cpc.2013.05.010, arXiv: 1301.3687 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  12. Bauer CW, Ferland N (2016) Resummation of electroweak Sudakov logarithms for real radiation. arXiv: 1601.07190

  13. Sjostrand T, Mrenna S, Skands PZ (2006) PYTHIA 6.4 physics and manual. JHEP 05:026. https://doi.org/10.1088/1126-6708/2006/05/026, arXiv: hep-ph/0603175 [hep-ph]

    Article  Google Scholar 

  14. Czakon M, Mitov A (2014) Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput Phys Commun 185:2930. https://doi.org/10.1016/j.cpc.2014.06.021, arXiv: 1112.5675 [hep-ph]

    Article  ADS  Google Scholar 

  15. Botje M et al (2011) The PDF4LHC Working Group Interim Recommendations. arXiv: 1101.0538 [hep-ph]

  16. Kidonakis N (2010) Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-. Phys Rev D82:054018. https://doi.org/10.1103/PhysRevD.82.054018, arXiv: 1005.4451 [hep-ph]

  17. Kidonakis N (2011) Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys Rev D83:091503. https://doi.org/10.1103/PhysRevD.83.091503, arXiv: 1103.2792 [hep-ph]

  18. ATLAS Physics Modeling Group. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO (Internal documentation)

  19. ATLAS Physics Modeling Group. https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MC15SingleTopSamplesPMG (Internal documentation)

  20. Gleisberg T et al (2009) Event generation with SHERPA 1.1. JHEP 02:007. https://doi.org/10.1088/1126-6708/2009/02/007, arXiv: 0811.4622 [hep-ph]

    Article  Google Scholar 

  21. ATLAS Luminosity Working Group. https://twiki.cern.ch/twiki/bin/view/~AtlasPublic/LuminosityPublicResults

  22. ATLAS Isolation Forum. https://twiki.cern.ch/twiki/bin/view/AtlasProtected/IsolationForum (Internal documentation)

  23. Aad G et al (2016) Muon reconstruction performance of the ATLAS detector in proton-proton collision data at ps \(=\) 13 TeV. Eur Phys J C76.5:292. https://doi.org/10.1140/epjc/s10052-016-4120-y, arXiv: 1603.05598 [hep-ex]

  24. Cacciari M, Salam GP, Soyez G (2008) The anti-k(t) jet clustering algorithm. JHEP 04:063. https://doi.org/10.1088/1126-6708/2008/04/063, arXiv: 0802.1189 [hep-ph]

    Article  Google Scholar 

  25. Aad G et al (2015) Search for new phenomena in the dijet mass distribution using p – p collision data at ps \(=\) 8 TeV with the ATLAS detector. Phys Rev D91.5:052007. https://doi.org/10.1103/PhysRevD.91.052007, arXiv: 1407.1376 [hep-ex]

  26. Aad G et al (2014) Search for high-mass dilepton resonances in pp collisions at ps \(=\) 8 TeV with the ATLAS detector. Phys Rev D90.5:052005. https://doi.org/10.1103/PhysRevD.90.052005, arXiv: 1405.4123 [hep-ex]

  27. Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data (2016). Technical report ATLAS-CONF-2016-024. Geneva: CERN. https://cds.cern.ch/record/2157687

  28. ATLAS Collaboration (2014) Electron and photon energy calibration with the ATLAS detector using LHC run 1 data. Eur Phys J C74.10:3071. https://doi.org/10.1140/epjc/s10052-014-3071-4, arXiv: 1407.5063 [hep-ex]

  29. ATLAS Collaboration (2015). Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at sqrt(s) \(=\) 13 TeV. ATL-PHYS-PUB-2015-015. https://cds.cern.ch/record/2037613

  30. ATLAS Collaboration (2015). A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale. ATL-PHYS-PUB-2015-014. https://cds.cern.ch/record/2037436

  31. ATLAS Collaboration (2015). Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at ps \(=\) 13 TeV. Technical report ATL-PHYS-PUB-2015-015. Geneva: CERN. https://cds.cern.ch/record/2037613

  32. ATLAS Collaboration (2015). Expected performance of missing transverse momentum reconstruction for the ATLAS detector at sqrt(s) \(=\) 13 TeV. ATL-PHYS-PUB-2015-023. https://cds.cern.ch/record/2037700

  33. ATLAS Physics Modeling Group. https://twiki.cern.ch/twiki/bin/view/Atlas/LuminosityForPhysics (Internal documentation)

  34. Aad G et al (2013) Improved luminosity determination in pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. Eur Phys J C73.8:2518. https://doi.org/10.1140/epjc/s10052-013-2518-3, arXiv: 1302.4393 [hep-ex]

  35. Gao J, Nadolsky P (2014) A meta-analysis of parton distribution functions. JHEP 07:035. https://doi.org/10.1007/JHEP07(2014)035, arXiv: 1401.0013 [hep-ph]

  36. Butterworth J et al (2016) PDF4LHC recommendations for LHC Run II. J Phys G43:023001. https://doi.org/10.1088/0954-3899/43/2/023001, arXiv: 1510.03865 [hep-ph]

    Article  ADS  Google Scholar 

  37. Butterworth J et al (2010) Single Boson and Diboson production cross sections in pp collisions at sqrts \(=\) 7 TeV. Technical report ATL-COM-PHYS-2010-695. Geneva: CERN. https://cds.cern.ch/record/1287902

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zinser .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zinser, M. (2018). Analysis. In: Search for New Heavy Charged Bosons and Measurement of High-Mass Drell-Yan Production in Proton—Proton Collisions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-00650-1_9

Download citation

Publish with us

Policies and ethics