Mechanical Factors Affecting the Mobility of Membrane Proteins

  • Vincent Démery
  • David LacosteEmail author


The mobility of membrane proteins controls many biological functions. The application of the model of Saffman and Delbrück to the diffusion of membrane proteins does not account for all the experimental measurements. These discrepancies have triggered a lot of studies on the role of the mechanical factors in the mobility. After a short review of the Saffman and Delbrück model and of some key experiments, we explore the various ways to incorporate the effects of the different mechanical factors. Our approach focuses on the coupling of the protein to the membrane, which is the central element in the modeling. We present a general, polaron-like model, its recent application to the mobility of a curvature sensitive protein, and its various extensions to other couplings that may be relevant in future experiments.


Membrane proteins Diffusion Protein mobility Membrane-protein interactions 



We would like to thank P. Quemeneur, J. K. Sigurdsson, M. Renner, P. J. Atzberger, and P. Bassereau for a previous collaboration, which motivated this chapter. In addition, we would like to acknowledge stimulating discussions with W. Urbach and M. S. Turner. D L would also like to thank Labex CelTisPhysBio (N ANR-10-LBX-0038) part of IDEX PSL (NANR-10-IDEX-0001-02 PSL) for financial support.


  1. 1.
    Einstein A (1905) Ann Phys 322:549CrossRefGoogle Scholar
  2. 2.
    Perrin JB (1909) Ann Chim Phys 19:5Google Scholar
  3. 3.
    Saffman PG, Delbrück M (1975) Proc Natl Acad Sci USA 72(8):3111CrossRefGoogle Scholar
  4. 4.
    Hughes BD, Pailthorpe BA, White LR (1981) J Fluid Mech 110:349CrossRefGoogle Scholar
  5. 5.
    Guigas G, Weiss M (2008) Biophys J 95(3):L25CrossRefGoogle Scholar
  6. 6.
    Petrov EP, Schwille P (2008) Biophys J 94(5):L41CrossRefGoogle Scholar
  7. 7.
    Petrov EP, Petrosyan R, Schwille P (2012) Soft Matter 8:7552CrossRefGoogle Scholar
  8. 8.
    Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Proc Natl Acad Sci USA 103:2098CrossRefGoogle Scholar
  9. 9.
    Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B (2009) J Am Chem Soc 131(35):12650CrossRefGoogle Scholar
  10. 10.
    Weiß K, Neef A, Van Q, Kramer S, Gregor I, Enderlein J (2013) Biophys J 105(2):455CrossRefGoogle Scholar
  11. 11.
    Quemeneur F, Sigurdsson JK, Renner M, Atzberger PJ, Bassereau P, Lacoste D (2014) Proc Natl Acad Sci USA 111(14):5083CrossRefGoogle Scholar
  12. 12.
    Gambin Y, Reffay M, Sierecki E, Homblé F, Hodges RS, Gov NS, Taulier N, Urbach W (2010) J Phys Chem B 114(10):3559CrossRefGoogle Scholar
  13. 13.
    Domanov YA, Aimon S, Toombes GES, Renner M, Quemeneur F, Triller A, Turner MS, Bassereau P (2011) Proc Natl Acad Sci USA 108(31):12605CrossRefGoogle Scholar
  14. 14.
    Daniels DR, Turner MS (2007) Langmuir 23(12):6667CrossRefGoogle Scholar
  15. 15.
    Hormel TT, Kurihara SQ, Brennan MK, Wozniak MC, Parthasarathy R (2014) Phys Rev Lett 112:188101CrossRefGoogle Scholar
  16. 16.
    Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P (2014) Dev Cell 28(2):212CrossRefGoogle Scholar
  17. 17.
    Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Science 282(5397):2220CrossRefGoogle Scholar
  18. 18.
    Liu Z, Gandhi CS, Rees DC (2009) Nature 461(7260):120CrossRefGoogle Scholar
  19. 19.
    Camley BA, Brown FLH (2013) Soft Matter 9(19):4767CrossRefGoogle Scholar
  20. 20.
    Seki K, Ramachandran S, Komura S (2011) Phys Rev E 84:021905CrossRefGoogle Scholar
  21. 21.
    Stone HA, Ajdari A (1998) J Fluid Mech 369:151Google Scholar
  22. 22.
    Goulian M, Bruinsma R, Pincus P (1993) Europhys Lett 22(2):145CrossRefGoogle Scholar
  23. 23.
    Reynwar B, Deserno M (2008) Biointerphases 3:FA117CrossRefGoogle Scholar
  24. 24.
    Reister E, Seifert U (2005) Europhys Lett 71(5):859CrossRefGoogle Scholar
  25. 25.
    Reynwar BJ, Illya G, Harmandaris VA, Muller MM, Kremer K, Deserno M (2007) Nature 447(7143):461CrossRefGoogle Scholar
  26. 26.
    Naji A, Atzberger PJ, Brown FLH (2009) Phys Rev Lett 102(13):138102CrossRefGoogle Scholar
  27. 27.
    Andersen OS, Koeppe RE (2007) Annu Rev Biophys Biomol Struct 36(1):107CrossRefGoogle Scholar
  28. 28.
    Winterhalter M, Helfrich W (1987) Phys Rev A 36:5874CrossRefGoogle Scholar
  29. 29.
    Phillips R, Ursell T, Wiggins P, Sens P (2009) Nature 459(7245):379CrossRefGoogle Scholar
  30. 30.
    Reister-Gottfried E, Leitenberger SM, Seifert U (2007) Phys Rev E 75(1):011908CrossRefGoogle Scholar
  31. 31.
    Naji A, Levine AJ, Pincus PA (2007) Biophys J 93(11):L49–L51CrossRefGoogle Scholar
  32. 32.
    Landau LD (1933) Phys Z Sowjetunion 3:644Google Scholar
  33. 33.
    Démery V, Dean DS (2010) Phys Rev Lett 104(8):080601CrossRefGoogle Scholar
  34. 34.
    Démery V, Dean DS (2010) Eur Phys J E 32:377CrossRefGoogle Scholar
  35. 35.
    Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Dean DS, Démery V (2011) J Phys Condens Matter 23(23):234114CrossRefGoogle Scholar
  37. 37.
    Démery V, Dean DS (2011) Phys Rev E 84(1):011148CrossRefGoogle Scholar
  38. 38.
    Leitenberger SM, Reister-Gottfried E, Seifert U (2008) Langmuir 24:1254CrossRefGoogle Scholar
  39. 39.
    Reister-Gottfried E, Leitenberger SM, Seifert U (2010) Phys Rev E 81:031903CrossRefGoogle Scholar
  40. 40.
    Sigurdsson JK, Brown FL, Atzberger PJ (2013) J Comput Phys 252:65CrossRefGoogle Scholar
  41. 41.
    Camley B, Brown F (2012) Phys Rev E 85(6):061921CrossRefGoogle Scholar
  42. 42.
    Gruner SM (1985) Proc Natl Acad Sci USA 82(11):3665CrossRefGoogle Scholar
  43. 43.
    Mouritsen OG, Bloom M (1993) Annu Rev Biophys Biomol Struct 22(1):145. PMID: 8347987CrossRefGoogle Scholar
  44. 44.
    Veatch SL, Keller SL (2003) Biophys J 85(5):3074CrossRefGoogle Scholar
  45. 45.
    Veatch SL, Soubias O, Keller SL, Gawrisch K (2007) Proc Natl Acad Sci USA 104(45):17650CrossRefGoogle Scholar
  46. 46.
    Machta BB, Veatch SL, Sethna JP (2012) Phys Rev Lett 109(13):138101CrossRefGoogle Scholar
  47. 47.
    Taniguchi T (1996) Phys Rev Lett 76(23):4444CrossRefGoogle Scholar
  48. 48.
    Fujitani Y (2013) J Phys Soc Jpn 82(12):124601CrossRefGoogle Scholar
  49. 49.
    Yanagisawa M, Imai M, Masui T, Komura S, Ohta T (2007) Biophys J 92(1):115CrossRefGoogle Scholar
  50. 50.
    Bartolo D, Long D, Fournier JB (2000) Europhys Lett 49(6):729CrossRefGoogle Scholar
  51. 51.
    de Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  52. 52.
    Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D (2016) eLife 5:e13150CrossRefGoogle Scholar
  53. 53.
    Bitbol AF, Dommersnes PG, Fournier JB (2010) Phys Rev E 81(5):050903CrossRefGoogle Scholar
  54. 54.
    Bitbol AF, Fournier JB (2011) Phys Rev E 83(6):061107CrossRefGoogle Scholar
  55. 55.
    Capovilla R, Guven J (2002) J Phys A Math Gen 35:6233CrossRefGoogle Scholar
  56. 56.
    Démery V, Dean DS (2011) Phys Rev E 84(1):010103CrossRefGoogle Scholar
  57. 57.
    Démery V (2013) Phys Rev E 87(5):052105CrossRefGoogle Scholar
  58. 58.
    Morris RG, Turner MS (2015) Phys Rev Lett 115:198101CrossRefGoogle Scholar
  59. 59.
    Daniels DR (2016) Eur Phys J E 39(10):96CrossRefGoogle Scholar
  60. 60.
    Morris RG (2017) Biophys J 112(1):3CrossRefGoogle Scholar
  61. 61.
    Lacoste D, Bassereau P (2013). In: Pabst G (ed) Liposomes, lipid bilayers and model membranes: from basic research to applications. Taylor and Francis, London, pp 271–287Google Scholar
  62. 62.
    Bouvrais H, Cornelius F, Ipsen JH, Mouritsen O (2012) Proc Natl Acad Sci USA 109(45):18442CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Physico-Chimie ThéoriqueUMR CNRS Gulliver 7083, ESPCIParisFrance

Personalised recommendations