Skip to main content

The History of Pineapple Improvement

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG,volume 22)

Abstract

Man has been directing the genome of pineapple for a very long time. There is some evidence to suggest the domestication process started around 6000 years ago. The methods for breeding have of course changed considerably from the earliest times of pineapple domestication, but we still are seeking much the same goals. So much so that one of the cultivars to emerge from that early domestication, ‘Smooth Cayenne’, is still the predominant processing pineapple worldwide. The most modern pineapple genotypes today are only about eight generations removed from the early pre-Columbian village cultivars. These early pre-Columbian cultivars have in fact been the source of genetics for most pineapple breeding programs. There has been little effort to incorporate wild genetics into modern pineapple. There is in fact little need given the substantial level of heterozygosity that domestic pineapple exhibits. The high level of heterozygosity in pineapple has both been a great source of diversity for breeders and also a major bottleneck in progress. Almost all modern approaches to genome manipulation or breeding have been attempted in pineapple to overcome the problems associated with high heterozygosity including inbreeding, ploidy manipulation, mutation breeding and gene modification. Only gene editing and marker-assisted breeding have yet to make their impact in pineapple. This chapter looks at the history of pineapple breeding, the approaches used and lessons learnt in the hope we build on their successes to provide the world with more examples of the great diversity in pineapple.

Keywords

  • Ananas
  • Breeding
  • Domestication
  • Heterozygosity
  • Pineapple

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00614-3_7
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00614-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)

References

  • Antoli MF, Strobeck C (2012) The population genetics of somatic mutation in plants. Am Nat 126(1):52–62

    CrossRef  Google Scholar 

  • Benega R, Cisneros A, Martinez J, Arias E, Daquinta M, Hidalgo M, Isidron M (1998) Brief review of some methods to obtain haploid plants. Proceedings of the 3rd International Pineapple Symposium. p 15

    Google Scholar 

  • Benega R, Isidron M, Arias E, Cisneros A, Martinez J, Companioni L, Borroto C (1997) Plant regeneration from pineapple ovules (Ananas comosus (L.) Merr.). Proceedings of the 2nd International Pineapple Symposium, Trois-Ilets, Martinique, 20–24 February 1995

    Google Scholar 

  • Benega R, Isidron M, Cisneros A, Arias E, Daquinta M, Companioni L, Martinez J (1996) Induction of callus in pineapple anthers. Cultivos Tropicales 17(1):72–74

    Google Scholar 

  • Benega R, Viciedo L, Martinez J, Castillo E, Cisneros A, Romero M, Isidron M, Fernandez J, Arias E (1997) Effect of gamma irradiations on pineapple pollen germination and tube growth. Fruits 51(6):425–428

    Google Scholar 

  • Cabot C (1987) Practice of pineapple breeding. Acta Hortic 196:25–36

    CrossRef  Google Scholar 

  • Cabral JRS, De Matos AP (2009) Imperial, a new pineapple cultivar resistant to fusariosis. Acta Hortic 822:47–50

    CrossRef  Google Scholar 

  • Cabral JRS, de Matos AP, de Cunha GAP (1993) Selection of pineapple cultivars resistant to fusariose. Acta Hortic 334:53–58

    CrossRef  Google Scholar 

  • Cabral JRS, Reinhardt DH (2004) Selfing in pineapple breeding. Pineapple News 11:20

    Google Scholar 

  • Chan YK and Lee CK (1985) The hybrid 1 pineapple: A new canning variety developed at MARDI. Teknologi Buah-buahan 1:24–30

    Google Scholar 

  • Chan YK (1991) Evaluation of F1 populations from a 4 × 4 diallel in pineapple and estimation of breeding values of parents. MARDI Res J 19:159–168

    CrossRef  Google Scholar 

  • Chan YL, Lee HK (1996) Josapine: a new pineapple hybrid developed at MARDI. Second National Congress on Genetics 13–15 Nov Genetics Society of Malaysia. p 217–220

    Google Scholar 

  • Collins JL (1950) Review of current breeding work. PRI abstract of monthly seminar review. pp 21

    Google Scholar 

  • Collins JL (1960) The pineapple – botany, cultivation and utilization. Interscience Publishers Inc., New York, p 294

    Google Scholar 

  • Coppens d’Eeckenbrugge G, Avila DEA, Martinez AR, Martinez LR (2011) The Cascajal block. Pineapple News 18:47–48

    Google Scholar 

  • Coppens d'Eeckenbrugge GC, Marie F (2000) Pineapple breeding at Cirad. II. Evaluation of ‘Scarlett’, a new hybrid for the fresh fruit market, as compared to ‘Smooth Cayenne’. Acta Hortic 529:155–163

    CrossRef  Google Scholar 

  • Dujardin M (1991) Cytogenetique de l’ananas. Fruits 46:376–379

    Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tissue Org Cult 84(1):1–16

    CrossRef  Google Scholar 

  • Firoozabady E, Young TR (2013) Pineapple plant named Rose (EF2-114). Plant Patent No. US20130326768P1

    Google Scholar 

  • Folse HJ, Roughgarden J (2012) Direct benefits of genetic mosaicism and intra-organismal selection: modelling coevolution between a long-lived tree and a short-lived herbivore. Evolution 66(4):1091–1113

    CrossRef  Google Scholar 

  • Gill DE, Chao L, Perkins SL, Wolf JB (1995) Genetic mosaicism in plants and clonal animals. Annu Rev Ecol Syst 26:423–444

    CrossRef  Google Scholar 

  • Gonzales J, Vriesenga J (2005) Pineapple plant named ‘P-1972’. US patent Application Number 20050283863

    Google Scholar 

  • Ibrahim R, Hamzah A, Jam ZJ, Bahagia M, Joyo M (2009) Gamma irradiation-induced mutation for the improvement of Josapine pineapple against bacterial heart rot disease and improved fruit quality. Induced plant mutations in the genomics era. Proceedings of an International Joint FAO/IAEA Symposium, 2008. p 276–278

    Google Scholar 

  • Johnson MO (1935) The Pineapple. Paradise and Pacific Press, Hawaii, p 306

    Google Scholar 

  • Kerns KR, Collins JL (1947) Chimeras in pineapple. Colchicine-induced tetraploids and diploid-tetraploids in the Cayenne variety. J Hered 38:322–330

    CAS  CrossRef  Google Scholar 

  • Kilian A, Sanewski G, Ko L (2016) The application of DArT-seq technology to pineapple. Acta Hortic 1111:181–188

    CrossRef  Google Scholar 

  • Ko HL, Campbell PR, Jobin-Décor MP, Eccleston KL, Graham MW, Smith MK (2006) The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150(3):387–395

    CAS  CrossRef  Google Scholar 

  • Ko L, Eccleston K, O’Hare T, Wong L, Giles J, Smith M (2013) Field evaluation of transgenic pineapple (Ananas comosus (L.) Merr.) cv. ‘Smooth Cayenne’ for resistance to blackheart under subtropical conditions. Scientia Hortic 159:103–108

    CrossRef  Google Scholar 

  • Levitt R (2014) A noble present of fruit: a transatlantic history of pineapple cultivation. Gard Hist 42(1):106–119

    Google Scholar 

  • Lin H, Tsay Y (2005) Studies on the combination of tissue culture and gamma ray irradiation to induce pineapple mutations. J Chinese Soc Hortic Sci 51(3):241–248

    Google Scholar 

  • Mendiola NB, Capinpin JM, Mercado TM (1951) Pineapple breeding in the Philippines 1922–1941. Philippine J Agr 16:51–84

    Google Scholar 

  • Mhate M, Srinivas L, Ganapathi TR (2011) Enhanced iron and zinc accumulation in genetically engineered plants using soybean ferritin gene. Biol Trace Elem Res 144(1–3):1219–1228

    CrossRef  Google Scholar 

  • Ming R, VanBuren R, Wai CM, Tang HB, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang JS, Huang LX, Zhang LM, Miao WJ, Zhang J, Ye ZY, Miao CY, Lin ZC, Wang H, Zhou HY, Yim WC, Priest HD, Zheng CF, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng GY, Singh R, Sharma A, Min XJ, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao ZY, Fang JP, Liu J, Zhang XD, Zhang Q, Hu WC, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu XG, Yang XH, Smith JAC, Cushman JC, Paull RE, Yu QY (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435

    CAS  CrossRef  Google Scholar 

  • Noorman Affendi M and Rozlaily Z (2016) Evaluation of new clones of ‘Jospine x 53-116’ on Malaysian peat and mineral soil. Acta Horticulturae Proc Int Symp on Papaya, Pineapple and Mango 1111:195–201

    Google Scholar 

  • Ogata T, Yamanaka S, Shoda M, Urasaki N, Yamamoto T (2016) Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango and papaya. Breed Sci 66:69–81

    CrossRef  Google Scholar 

  • Perez G, Isidron M, Arias E, Perez S, Gon J, Nieves N (1997) Caracterizacion phenotipica, bioquimica Y cytogenetic plantas de pina obtenidas por variacion somaclonal mutagenesis. Acta Hortic 425:221–232

    CrossRef  Google Scholar 

  • Sanewski G (2008) The effect of cut style pollination on fruit set in selfed pineapple. Pineapple News 15:7–9

    Google Scholar 

  • Sanewski GM (2009) The effect of different levels of inbreeding on self-incompatibility and inbreeding depression in pineapple. Acta Hortic 822:63–70

    CrossRef  Google Scholar 

  • Sanewski G, DeFaveri J (2017) The Australia fresh market pineapple breeding program. International Symposium on GA3 Tropical Fruit (Guava, Wax Apple, Pineapple, Sugar Apple). https://doi.org/10.17660/ActaHortic.2017.1166.6

  • Shoda M, Urasaki N, Sakiyama S, Tarakami S, Hosaka F, Sigeta N, Nishitan C, Yamamoto T (2012) DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breed Sci 62:352–359

    CAS  CrossRef  Google Scholar 

  • Singh R, Iye CPA (1997) Standardisation of dosimetry and techniques for inducing mutations in pineapple. In: Nijjar G (ed) Fruit breeding in India, vol 212. Oxford & IBH Publishing Co., New Delhi

    Google Scholar 

  • Smith JB (1965) Multiple objective breeding: new dimensions in pineapple improvement. PRI News 13(1):121–117

    Google Scholar 

  • Sripaoraya S, Marchant R, Power JB, Davey MR (2001) Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88(4):597–603

    CAS  CrossRef  Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple. J Exp Botany 57(14):3953–3960

    CAS  CrossRef  Google Scholar 

  • Ventura JA, Costa H, Caetano LCS (2009) Vitoria pineapple: scab resistant cultivar. Rev Bras Frutic 31:4

    CrossRef  Google Scholar 

  • Wang ML, Uruu G, Xiong L, He X, Nagai C, Cheah KT, Hu JS, GL N, Sipes BS, Atkinson HJ, Moore PH, Rohrbach KG, Paull RE (2009) Production of transgenic pineapple (Ananas comosus (L) Merr) plants via adventitious bud regeneration. In Vitro Cell Dev Biol Plant 45(2):112–121

    CAS  CrossRef  Google Scholar 

  • Williams DDF (1970) Production, propagation, and testing of new varieties. PRI News 18:9

    Google Scholar 

  • Williams DF, Fleisch H (1993) Historical review of pineapple breeding in Hawaii. Acta Hortic 334:67–76

    CrossRef  Google Scholar 

  • Wortmann S, Kerns K (1964) The plant breeding program. PRI Res Rep 64:180

    Google Scholar 

  • Yabor L, Valle B, Carvajal C, Aragon C, Herandez M, Gonzalez J, Daquinta M, Arencibia A, Lorenzo JC (2010) Characterisation of a field grown transgenic pineapple clone containing the genes chitinase, AP24 and bar. In Vitro Cell Dev Biol Plant 46(1):1–7

    CAS  CrossRef  Google Scholar 

  • Young RA (2016) Pineapple production on Dole farms in Latin America. Acta Hortic 111:227–230

    CrossRef  Google Scholar 

  • Young R, Gonzales J (2009) Pineapple plant named ‘Dole 14’. United States Patent Application 20090328260

    Google Scholar 

  • Zhou L, Matsumoto T, Tan HW, Meinhardt LW, Mischk S, Wang B, Zhang D (2015) Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm. Hortic Res 2:15056

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth M. Sanewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sanewski, G.M. (2018). The History of Pineapple Improvement. In: Ming, R. (eds) Genetics and Genomics of Pineapple. Plant Genetics and Genomics: Crops and Models, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-00614-3_7

Download citation