Abstract
Transportable elements (TEs) account for majority of genomic sequences in most plant genomes. They play vital roles in the structure, function, and evolution of genomes. Pineapple (Ananas comosus L.) is an important fruit crop performing CAM photosynthesis and has a relatively small genome size at 526 Mb. But it contains relative high proportion of TEs. In pineapple genome, TEs constitute 44% of the genome assembly and 69% of the genome after adding 25% of unassembled TEs. LTR (long terminal repeat) retrotransposons in Class I (retrotransposons) are the most abundant TEs in pineapple, accounting for 32% of the genome assembly. Class I TEs tend to enriched in gene-poor regions, while Class II TEs tend to enriched in gene-rich regions. The distribution of LTR retrotransposons among pseudo-molecules varies, ranging from 22.16 to 33.18%. A negative correlation is detected between LTRs copy number and expression levels. In addition, TEs of different families show expression bias in various tissues. The Sira family was most highly expressed in flower and floral tissues. The massive expansion of several TE families affects the genome size rapidly. Del, a family of the Gypsy superfamily, constitute of 60% of LTR retrotransposons. The insertion time suggests that it amplified to very high copy number at about 1.5–2.0 million years ago. In this chapter, we will review the resent discovered TEs in the pineapple genome.
Keywords
- Transportable elements
- LTR retrotransposons
- Pineapple
- Genome evolution
- Expression level
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Coen ES, Carpenter R, Martin C (1986) Transposable elements generate novel spatial patterns of gene expression in antirrhinum majus. Cell 47:285–296
D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, Barbe V, Mangenot S, Alberti A, Wincker P, Quesneville H, Feuillet C, Choulet F (2014) Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol 15:546
Fedoroff NV (2013) Plant transposons and genome dynamics in evolution
Flutre T, Duprat E, Feuillet C, Quesneville H (2012) Considering transposable element diversification in de novo annotation approaches. PLoS One 6:e16526
Grandbastien MA, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 337:376–380
Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of Rice Involved in Mutations Induced by Tissue Culture. Proc Natl Acad Sci U S A 93:7783–7788
International Rice Genome Sequencing P (2005) The map-based sequence of the rice genome. Nature 436:793
Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98:8714–8719
Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975
Magallón S, Al E (2015) A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol 207:437–453
Marco A, Marín I (2008) How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics 9:219
Mcclintock B (1949) Mutable loci in maize. Proc Natl Acad Sci 36:344–355
Mcclintock B (1956) Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol 8:58
Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660
Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA (1997) The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 33:257–266
Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442
Murat F, Louis A, Maumus F, Armero A, Cooke R, Quesneville H, Roest CH, Salse J (2016) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 17:1–1
Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047
Orozco-Arias S, Liu J, Tabares-Soto R, Ceballos D, Silva Domingues D, Garavito A, Ming R, Guyot R (2018) Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics. Biology 7:E32
Park M, Park J, Kim S, Kwon JK, Park HM, Bae IH, Yang TJ, Lee YH, Kang BC, Choi D (2012) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J 69:1018–1029
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556
Petersonburch BD, Dan N, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5:1–16
Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262
Sanmiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45
Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS, Pasternak S, Liang CZ, Zhang JW, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115
Schulman AH (2013) Retrotransposon replication in plants. Curr Opin Virol 3:604–614
Selinger DA, Chandler VL (1999) Major recent and independent changes in levels and patterns of expression have occurred at the b gene, a regulatory locus in maize. Proc Natl Acad Sci U S A 96:15007–15012
Selinger DA, Lisch D, Chandler VL (1998) The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics 149:1125
The International Brachypodium I (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763
Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Mol Biol 38:461–465
Vogel JP (2016) Genetics and genomics of brachypodium. Springer International Publishing, Cham
Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973
Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722
Wright DA, Voytas DF (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12:122–131
Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC (2015) A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol 207:491–504
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Liu, J., Guyot, R., Ming, R. (2018). Transposable Elements in the Pineapple Genome. In: Ming, R. (eds) Genetics and Genomics of Pineapple. Plant Genetics and Genomics: Crops and Models, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-00614-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-00614-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00613-6
Online ISBN: 978-3-030-00614-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)