Skip to main content

Salient Superpixel Visual Tracking with Coarse-to-Fine Segmentation and Manifold Ranking

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2450 Accesses

Abstract

We propose a novel salient superpixel based tracking algorithm using Coarse-to-Fine segmentation on graph model, where target state is estimated by a combination of pixel-level cues and middle-level cues to achieve accurate target appearance model. We exploit temporal optical flow and color distribution characteristics as coarse grained information from pixel-level processing, and propagate to fine-grained superpixels to improve initial target appearance segmentation from bounding box annotations. Our algorithm constructs a graph model with manifold ranking by improved superpixels to estimate the saliency of target foreground and background in subsequent frames. The tracking result is located by calculating the weight of multi-scale box, where the weight depends on the similarity of scores of foreground and background superpixels in the scale box. We compared our algorithm with the existing techniques in OTB100 dataset, and achieved substantially better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, C., Zhang, L.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3166–3173. IEEE, Portland (2013)

    Google Scholar 

  2. Achanta, R.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  3. Belagiannis, V., Schubert, F., Navab, N., Ilic, S.: Segmentation based particle filtering for real-time 2D object tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 842–855. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_60

    Chapter  Google Scholar 

  4. Rother, C., Kolmogorov, V.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH, Los Angeles, vol. 23, pp. 309–314 (2004)

    Google Scholar 

  5. Liu, Q.: Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset. J. Electron. Imaging 26(6), 1 (2017)

    Google Scholar 

  6. Son, J., Jung, I.: Tracking-by-segmentation with online gradient boosting decision tree. In: International Conference on Computer Vision (ICCV), pp. 3056–3064. IEEE, Santiago (2015)

    Google Scholar 

  7. Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE, Hawaii (2007)

    Google Scholar 

  8. Yan, Y., Ren, J.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cognit. Comput. 10(1), 94–104 (2018)

    Article  MathSciNet  Google Scholar 

  9. Kalal, Z., Mikolajczyk, K.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422 (2012)

    Article  Google Scholar 

  10. Xu, C.: Robust visual tracking via online multiple instance learning with Fisher information. Pattern Recognit. 48(12), 3917–3926 (2015)

    Article  Google Scholar 

  11. Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels. In: 13th International Conference on Computer Vision (ICCV), pp. 263–270. IEEE, Barcelona (2011)

    Google Scholar 

  12. Wang, S., Lu, H.: Superpixel tracking. In: 13th International Conference on Computer Vision (ICCV), pp. 1323–1330. IEEE, Barcelona (2011)

    Google Scholar 

  13. Yang, F.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)

    Article  MathSciNet  Google Scholar 

  14. Zhou, X.: Learning a superpixel-driven speed function for level set tracking. IEEE Trans. Cybern. 46(7), 1498–1510 (2016)

    Article  Google Scholar 

  15. Hong, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Tracking using multilevel quantizations. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 155–171. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_11

    Chapter  Google Scholar 

  16. Xiao, J., Stolkin, R., Leonardis, A.: Single target tracking using adaptive clustered decision trees and dynamic multilevel appearance models. In: Computer Vision and Pattern Recognition (CVPR), pp. 4978–4987. IEEE, Boston (2015)

    Google Scholar 

  17. Yeo, D., Son, J., Han, B., Han, J.H.: Superpixel-based tracking-by-segmentation using Markov chains. In: Computer Vision and Pattern Recognition (CVPR), pp. 511–520. IEEE, Hawaii (2017)

    Google Scholar 

  18. Wang, L., Lu, H., Yang, M.H.: Constrained superpixel tracking. IEEE Trans. Cybern. 48(3), 1030–1041 (2018)

    Article  Google Scholar 

  19. Liu, C.: Beyond pixels: exploring new representations and applications for motion analysis. Doctoral Thesis. Massachusetts Institute of Technology (2009)

    Google Scholar 

  20. Lucchi, A., Li, Y., Smith, K., Fua, P.: Structured image segmentation using kernelized features. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 400–413. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_29

    Chapter  Google Scholar 

  21. Rosenfeld, A., Weinshall, D.: Extracting foreground masks towards object recognition. In: IEEE International Conference on Computer Vision (ICCV), 1371–1378. IEEE (2011)

    Google Scholar 

  22. Chai, Y., Ren, J., Zhao, H., et al.: Hierarchical and multi-featured fusion for effective gait recognition under variable scenarios. Pattern Anal. Appl. 19(4), 905–917 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ezrinda, M.Z., Kamarul Hawari, G., Ren, J., Mohd Zuki, S.: A hybrid thermal-visible fusion for outdoor human detection. J. Telecommun. Electron. Comput. Eng. (JTEC) 10(1–4), 79–83 (2018)

    Google Scholar 

  24. Yan, Y., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018)

    Article  Google Scholar 

  25. Wang, Z., et al.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neurocomputing 287, 68–83 (2018)

    Article  Google Scholar 

  26. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  27. Wu, Y.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  28. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  29. Babenko, B., Yang, M.-H.: Visual tracking with online multiple instance learning. In: Computer Vision and Pattern Recognition (CVPR), pp. 983–990. IEEE, Florida (2009)

    Google Scholar 

  30. Liu, B., Huang, J.: Robust tracking using local sparse appearance model and k-selection. In: Computer Vision and Pattern Recognition (CVPR), pp. 1313–1320. IEEE (2011)

    Google Scholar 

Download references

Acknowledgment

This research is supported by National Natural Science Foundation of China (61772144, 61672008), Innovation Research Project of Education Department of Guangdong Province (Natural Science) (2016KTSCX077), Foreign Science and Technology Cooperation Plan Project of Guangzhou Science Technology and Innovation Commission (201807010059), Guangdong Provincial Application-oriented Technical Research and Development Special Fund Project (2016B010127006), the Natural Science Foundation of Guangdong Province (2016A030311013), and the Scientific and Technological Projects of Guangdong Province (2017A050501039). The corresponding author is Huimin Zhao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, J., Zhao, H. (2018). Salient Superpixel Visual Tracking with Coarse-to-Fine Segmentation and Manifold Ranking. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics