Abstract
With increasing availability of location-acquisition technologies, huge volumes of data tracking transportation system have been collected. These data are highly valuable for unveiling human mobility patterns, transportation system utilization, and urban planning. However, it is still highly challenging to visualize and explore transportation data. In this paper, an interactive visual analytic system, TranSeVis has been proposed. It has two visualization modules, one named region view provides geographical information and effective temporal information comparison, the other named road view provides detailed visual analysis of mobility factors along routes or congestions spots. Besides, two case studies have been used to evaluate the visualization techniques and real-world taxi data sets have been used to demonstrate TranSeVis. Based on the results, TranSeVis offers transportation researchers an easy-to-use, efficient, and scalable platform to visualize and explore transportation data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37583-5
Andrienko, G., Andrienko, N., Schumann, H., Tominski, C.: Visualization of trajectory attributes in space-time cube and trajectory wall. In: Buchroithner, M., Prechtel, N., Burghardt, D. (eds.) Cartography from Pole to Pole. LNGC, pp. 157–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-32618-9_11
Bak, P., Mansmann, F., Janetzko, H., Keim, D.: Spatiotemporal analysis of sensor logs using growth ring maps. IEEE Trans. Vis. Comput. Graph. 15(6), 913–920 (2009). https://doi.org/10.1109/TVCG.2009.182
Chang, R., Wessel, G., Kosara, R., Sauda, E., Ribarsky, W.: Legible cities: focus-dependent multi-resolution visualization of urban relationships. IEEE Trans. Vis. Comput. Graph. 13(6), 1169–1175 (2007). https://doi.org/10.1109/TVCG.2007.70574
Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans. Visual. Comput. Graph. 19(12), 2149–2158 (2013). https://doi.org/10.1109/TVCG.2013.226
Fisher, D.: Hotmap: looking at geographic attention. IEEE Trans. Vis. Comput. Graph. 13(6), 1184–1191 (2007). https://doi.org/10.1109/TVCG.2007.70561
Guo, D., Zhu, X.: Origin-destination flow data smoothing and mapping. IEEE Trans. Vis. Comput. Graph. 20(12), 2043–2052 (2014). https://doi.org/10.1109/TVCG.2014.2346271
Kapler, T., Wright, W.: Geotime information visualization. Inf. Vis. 4(2), 136–146 (2005)
Liu, H., Gao, Y., Lu, L., Liu, S., Qu, H., Ni, L.M.: Visual analysis of route diversity. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 171–180, October 2011. https://doi.org/10.1109/VAST.2011.6102455
Mehler, A., Bao, Y., Li, X., Wang, Y., Skiena, S.: Spatial analysis of news sources. IEEE Trans. Vis. Comput. Graph. 12(5), 765–772 (2006). https://doi.org/10.1109/TVCG.2006.179
Speckmann, a., Verbeek, K.: Necklace maps. IEEE Trans. Vis. Comput. Graph. 16(6), 881–889 (2010). https://doi.org/10.1109/TVCG.2010.180
Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visualization of trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12), 2565–2574 (2012)
Wang, Z., Lu, M., Yuan, X., Zhang, J., van de Wetering, H.: Visual traffic jam analysis based on trajectory data. IEEE Trans. Vis. Comput. Graph. 19(12), 2159–2168 (2013)
Wood, J., Dykes, J., Slingsby, A., Clarke, K.: Interactive visual exploration of a large spatio-temporal dataset: reflections on a geovisualization mashup. IEEE Trans. Vis. Comput. Graph. 13(6), 1176–1183 (2007). https://doi.org/10.1109/TVCG.2007.70570
Wu, W., Zheng, Y., Qu, H., Chen, W., Gröller, E., Ni, L.M.: BoundarySeer: visual analysis of 2D boundary changes. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 143–152, October 2014. https://doi.org/10.1109/VAST.2014.7042490
Zeng, W., Fu, C.W., Arisona, S.M., Qu, H.: Visualizing interchange patterns in massive movement data. In: Proceedings of the 15th Eurographics Conference on Visualization, EuroVis 2013, pp. 271–280. The Eurographs Association & #38; John Wiley & #38; Sons Ltd., Chichester (2013). https://doi.org/10.1111/cgf.12114, https://doi.org/10.1111/cgf.12114
Zhao, J., Forer, P., Harvey, A.S.: Activities, ringmaps and geovisualization of large human movement fields. Inf. Vis. 7(3–4), 198–209 (2008). https://doi.org/10.1057/palgrave.ivs.9500184. http://ivi.sagepub.com/content/7/3-4/198.abstract
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Gong, R., Teng, Z., Han, M., Wei, L., Zhang, Y., Pu, J. (2018). TranSeVis: A Visual Analytics System for Transportation Data Sensing and Exploration. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2018. Lecture Notes in Computer Science(), vol 11151. Springer, Cham. https://doi.org/10.1007/978-3-030-00560-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-00560-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00559-7
Online ISBN: 978-3-030-00560-3
eBook Packages: Computer ScienceComputer Science (R0)