Skip to main content

TranSeVis: A Visual Analytics System for Transportation Data Sensing and Exploration

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11151))

Abstract

With increasing availability of location-acquisition technologies, huge volumes of data tracking transportation system have been collected. These data are highly valuable for unveiling human mobility patterns, transportation system utilization, and urban planning. However, it is still highly challenging to visualize and explore transportation data. In this paper, an interactive visual analytic system, TranSeVis has been proposed. It has two visualization modules, one named region view provides geographical information and effective temporal information comparison, the other named road view provides detailed visual analysis of mobility factors along routes or congestions spots. Besides, two case studies have been used to evaluate the visualization techniques and real-world taxi data sets have been used to demonstrate TranSeVis. Based on the results, TranSeVis offers transportation researchers an easy-to-use, efficient, and scalable platform to visualize and explore transportation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual Analytics of Movement. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37583-5

    Book  Google Scholar 

  2. Andrienko, G., Andrienko, N., Schumann, H., Tominski, C.: Visualization of trajectory attributes in space-time cube and trajectory wall. In: Buchroithner, M., Prechtel, N., Burghardt, D. (eds.) Cartography from Pole to Pole. LNGC, pp. 157–163. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-32618-9_11

    Chapter  Google Scholar 

  3. Bak, P., Mansmann, F., Janetzko, H., Keim, D.: Spatiotemporal analysis of sensor logs using growth ring maps. IEEE Trans. Vis. Comput. Graph. 15(6), 913–920 (2009). https://doi.org/10.1109/TVCG.2009.182

    Article  Google Scholar 

  4. Chang, R., Wessel, G., Kosara, R., Sauda, E., Ribarsky, W.: Legible cities: focus-dependent multi-resolution visualization of urban relationships. IEEE Trans. Vis. Comput. Graph. 13(6), 1169–1175 (2007). https://doi.org/10.1109/TVCG.2007.70574

    Article  Google Scholar 

  5. Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans. Visual. Comput. Graph. 19(12), 2149–2158 (2013). https://doi.org/10.1109/TVCG.2013.226

    Article  Google Scholar 

  6. Fisher, D.: Hotmap: looking at geographic attention. IEEE Trans. Vis. Comput. Graph. 13(6), 1184–1191 (2007). https://doi.org/10.1109/TVCG.2007.70561

    Article  Google Scholar 

  7. Guo, D., Zhu, X.: Origin-destination flow data smoothing and mapping. IEEE Trans. Vis. Comput. Graph. 20(12), 2043–2052 (2014). https://doi.org/10.1109/TVCG.2014.2346271

    Article  Google Scholar 

  8. Kapler, T., Wright, W.: Geotime information visualization. Inf. Vis. 4(2), 136–146 (2005)

    Article  Google Scholar 

  9. Liu, H., Gao, Y., Lu, L., Liu, S., Qu, H., Ni, L.M.: Visual analysis of route diversity. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 171–180, October 2011. https://doi.org/10.1109/VAST.2011.6102455

  10. Mehler, A., Bao, Y., Li, X., Wang, Y., Skiena, S.: Spatial analysis of news sources. IEEE Trans. Vis. Comput. Graph. 12(5), 765–772 (2006). https://doi.org/10.1109/TVCG.2006.179

    Article  Google Scholar 

  11. Speckmann, a., Verbeek, K.: Necklace maps. IEEE Trans. Vis. Comput. Graph. 16(6), 881–889 (2010). https://doi.org/10.1109/TVCG.2010.180

  12. Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visualization of trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12), 2565–2574 (2012)

    Article  Google Scholar 

  13. Wang, Z., Lu, M., Yuan, X., Zhang, J., van de Wetering, H.: Visual traffic jam analysis based on trajectory data. IEEE Trans. Vis. Comput. Graph. 19(12), 2159–2168 (2013)

    Article  Google Scholar 

  14. Wood, J., Dykes, J., Slingsby, A., Clarke, K.: Interactive visual exploration of a large spatio-temporal dataset: reflections on a geovisualization mashup. IEEE Trans. Vis. Comput. Graph. 13(6), 1176–1183 (2007). https://doi.org/10.1109/TVCG.2007.70570

    Article  Google Scholar 

  15. Wu, W., Zheng, Y., Qu, H., Chen, W., Gröller, E., Ni, L.M.: BoundarySeer: visual analysis of 2D boundary changes. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 143–152, October 2014. https://doi.org/10.1109/VAST.2014.7042490

  16. Zeng, W., Fu, C.W., Arisona, S.M., Qu, H.: Visualizing interchange patterns in massive movement data. In: Proceedings of the 15th Eurographics Conference on Visualization, EuroVis 2013, pp. 271–280. The Eurographs Association & #38; John Wiley & #38; Sons Ltd., Chichester (2013). https://doi.org/10.1111/cgf.12114, https://doi.org/10.1111/cgf.12114

  17. Zhao, J., Forer, P., Harvey, A.S.: Activities, ringmaps and geovisualization of large human movement fields. Inf. Vis. 7(3–4), 198–209 (2008). https://doi.org/10.1057/palgrave.ivs.9500184. http://ivi.sagepub.com/content/7/3-4/198.abstract

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansu Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, R., Teng, Z., Han, M., Wei, L., Zhang, Y., Pu, J. (2018). TranSeVis: A Visual Analytics System for Transportation Data Sensing and Exploration. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2018. Lecture Notes in Computer Science(), vol 11151. Springer, Cham. https://doi.org/10.1007/978-3-030-00560-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00560-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00559-7

  • Online ISBN: 978-3-030-00560-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics