Gun Identification Using Tensorflow

  • Mitchell Singleton
  • Benjamin Taylor
  • Jacob Taylor
  • Qingzhong LiuEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 251)


Automatic video surveillance can assist security personnel in the identification of threats. Generally, security personnel are monitoring multiple monitors and a system that would send an alert or warning could give the personnel extra time to scrutinize if a person is carrying a firearm. In this paper, we utilize Google’s Tensorflow API to create a digital framework that will identify handguns in real time video. By utilizing the MobileNetV1 Neural Network algorithm, our system is trained to identify handguns in various orientations, shapes, and sizes, then the intelligent gun identification system will automatically interpret if the subject is carrying a gun or other objects. Our experiments show the efficiency of implemented intelligent gun identification system.


Tensorflow Gun detection Video surveillance 


  1. 1.
    Grega, M., Matiolański, A., Guzik, P., Leszczuk, M.: Automated detection of firearms and knives in a CCTV image. Sensors 16, 1–16 (2016). ISSN 1424-8220CrossRefGoogle Scholar
  2. 2.
    Tiwari, R.K., Verma, G.K.: A computer vision based framework for visual gun detection using harris interest point detector. Procedia Comput. Sci. 54, 703–712 (2015). Scholar
  3. 3.
    Olmos, R., Tabik, S., Herrera, F.: Automatic Handgun Detection Alarm in Videos Using Deep Learning. arXiv:170205147 cs (2017)Google Scholar
  4. 4.
    Yeom, S., et al.: Real-time outdoor concealed-object detection with passive millimeter wave imaging. Opt. Express 19, 2530–2536 (2011). Scholar
  5. 5.
    Vajhala, R., Maddineni, R., Yeruva, P.R.: Weapon Detection in Surveillance Camera Images (2016)Google Scholar
  6. 6.
    Kang, K., Ouyang, W., Li, H., Wang, X.: Object Detection from Video Tubelets with Convolutional Neural Networks. Presented at the June (2016)Google Scholar
  7. 7.
    Ray, L., Miao, T.: Towards Real-Time Detection, Tracking and Classification of Natural Video. Presented at the June (2016)Google Scholar
  8. 8.
    Abadi, M.: TensorFlow: learning functions at scale. In: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, p. 1. ACM, New York (2016)Google Scholar
  9. 9.
    Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016)CrossRefGoogle Scholar
  10. 10.
    Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Commun. ACM. 55, 61–69 (2012). Scholar
  11. 11.
    Kaehler, A., Bradski, G.R.: Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library. O’Reilly Media, Sebastopol (2016)Google Scholar
  12. 12.
    Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv:170404861 cs (2017)Google Scholar
  13. 13.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017). Scholar
  14. 14.
    Kadiyala, A., Kumar, A.: Applications of Python to evaluate environmental data science problems. Environ. Prog. Sustain. Energy 36, 1580 (2017)CrossRefGoogle Scholar
  15. 15.
    Saha, M.D., Darji, M.K., Patel, N., Thakore, D.: Implementation of image enhancement algorithms and recursive ray tracing using CUDA. Procedia Comput. Sci. 79, 516–524 (2016). Scholar
  16. 16.
    Shi, J., Tomasi, C.: Good Features to Track. Cornell University, Ithaca (1993)Google Scholar
  17. 17.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3485–3492. IEEE (2010)Google Scholar
  18. 18.
    Internet Movie Firearm Database.
  19. 19.
  20. 20.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Mitchell Singleton
    • 1
  • Benjamin Taylor
    • 1
  • Jacob Taylor
    • 1
  • Qingzhong Liu
    • 1
    Email author
  1. 1.Department of Computer ScienceSam Houston State UniversityHuntsvilleUSA

Personalised recommendations