Skip to main content

The Lipid Cubic Phase as a Medium for the Growth of Membrane Protein Microcrystals

  • Chapter
  • First Online:
X-ray Free Electron Lasers
  • 1223 Accesses

Abstract

The lipid-based bicontinuous cubic mesophase is a nanoporous membrane mimetic with applications in areas that include medicine, personal care products, foods, and the basic sciences. An application of particular note is as a medium in which to grow crystals of membrane proteins for structure determination by X-ray crystallography. At least two variations of the mesophase exist. One is the highly viscous cubic phase, known as the lipid cubic phase (LCP), which has well-developed long-range order. The other, the so-called sponge phase, is considerably more fluid and lacks long-range order. Both phase types have been shown to be amenable for growing microcrystals of membrane proteins and for use as a delivery medium to shuttle protein crystals to an X-ray free-electron laser beam for serial femtosecond crystallography. Here, we provide background on the physicochemical properties of these mesophases and how they function to grow microcrystals of membrane proteins. Protocols implemented for the generation and use of nanoliter volumes of mesophase of suitably high microcrystal density required for serial femtosecond crystallography are described. Prospects for future uses of lipid mesophases in the serial femtosecond crystallography arena are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this chapter are reproduced directly from Ref. [1]

References

  1. Caffrey, M., Li, D., Howe, N., & Shah, S. T. A. (2014). ‘Hit and run’ serial femtosecond crystallography of a membrane kinase in the lipid cubic phase. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130621. https://doi.org/10.1098/rstb.2013.0621.

    Article  Google Scholar 

  2. Spence, J. C. H., Weierstall, U., & Chapman, H. N. (2012). X-ray lasers for structural and dynamic biology. Reports on Progress in Physics, 75, 102601. https://doi.org/10.1088/0034-4885/75/10/102601.

    Article  CAS  PubMed  Google Scholar 

  3. Barty, A., Kupper, J., & Chapman, H. N. (2013). Molecular imaging using X-ray free-electron lasers. Annual Review of Physical Chemistry, 64, 415–435. https://doi.org/10.1146/annurev-physchem-032511-143708.

    Article  CAS  PubMed  Google Scholar 

  4. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al.\ (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470, 73–77.

    Article  CAS  Google Scholar 

  5. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337, 362–364.

    Article  CAS  Google Scholar 

  6. Kern, J., Alonso-Mori, R., Hellmich, J., Tran, R., Hattne, J., Laksmono, H., et al. (2012). Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 109, 9721–9726. https://doi.org/10.1073/pnas.1204598109.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Redecke, L., Nass, K., DePonte, D. P., White, T. A., Rehders, D., Barty, A., et al. (2013). Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science, 339, 227–230.

    Article  CAS  Google Scholar 

  8. Johansson, L. C., Arnlund, D., White, T. A., Katona, G., Deponte, D. P., Weierstall, U., et al. (2012). Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods, 9, 263–265. https://doi.org/10.1038/nmeth.1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fraser, J. S., van den Bedem, H., Samelson, A. J., Lang, P. T., Holton, J. M., Echols, N., et al. (2011). Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proceedings of the National Academy of Sciences of the United States of America, 108, 16247–16252. https://doi.org/10.1073/pnas.1111325108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burmeister, W. P. (2000). Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallographica. Section D, Biological Crystallography, 56, 328–341. https://doi.org/10.1107/s0907444999016261.

    Article  CAS  PubMed  Google Scholar 

  11. Briggs, J., Chung, H., & Caffrey, M. (1996). The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. Journal de Physique II, EDP Sciences, 6, 723–751.

    CAS  Google Scholar 

  12. Qiu, H., & Caffrey, M. (2000). The phase diagram of the monoolein/water system: Metastability and equilibrium aspects. Biomaterials, 21, 223–234. https://doi.org/10.1016/s0142-9612(99)00126-x.

    Article  CAS  PubMed  Google Scholar 

  13. Caffrey, M., Li, D., & Dukkipati, A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases–recent advances and successes. Biochemistry, 51, 6266–6288. https://doi.org/10.1021/bi300010w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342, 1521–1524. https://doi.org/10.1126/science.1244142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, F., Liu, W., Hanson, M. A., Stevens, R. C., & Cherezov, V. (2011). Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Crystal Growth & Design, 11, 1193–1201.

    Article  CAS  Google Scholar 

  16. Caffrey, M., Lyons, J. A., Smyth, T., & Hart, D. J. (2009). Monoacylglycerols: The workhorse lipids for crystallizing membrane proteins in mesophases. In L. DeLucas (Ed.), Current topic in membranes (pp. 83–108). Burlington, NJ: Academic Press.

    Chapter  Google Scholar 

  17. Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F., & Caffrey, M. (2004). A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallographica. Section D, Biological Crystallography, 60, 1795–1807. https://doi.org/10.1107/S0907444904019109.

    Article  CAS  PubMed  Google Scholar 

  18. Li, D., Boland, C., Walsh, K., & Caffrey, M. (2012). Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. Journal of Visualized Experiments, 67, e4000. https://doi.org/10.3791/4000.

    Article  CAS  Google Scholar 

  19. Caffrey, M. (2008). On the mechanism of membrane protein crystallization in lipidic mesophases. Crystal Growth & Design, 8, 4244–4254.

    Article  CAS  Google Scholar 

  20. Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., et al. (2011). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature, 477, 549–555.

    Article  CAS  Google Scholar 

  21. Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523, 561–567. https://doi.org/10.1038/nature14656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Misquitta, L. V., Misquitta, Y., Cherezov, V., Slattery, O., Mohan, J. M., Hart, D., et al. (2004). Membrane protein crystallization in lipidic mesophases with tailored bilayers. Structure, 12, 2113–2124. https://doi.org/10.1016/j.str.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  23. Misquitta, Y., Cherezov, V., Havas, F., Patterson, S., Mohan, J. M., Wells, A. J., et al. (2004). Rational design of lipid for membrane protein crystallization. Journal of Structural Biology, 148, 169–175. https://doi.org/10.1016/j.jsb.2004.06.008.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., et al. (2013). Structural basis for molecular recognition at serotonin receptors. Science, 340, 610–614.

    Article  CAS  Google Scholar 

  25. Li, D., Stansfeld, P. J., Sansom, M. S. P., Keogh, A., Vogeley, L., Howe, N., et al. (2015). Ternary structure reveals mechanism of a membrane diacylglycerol kinase. Nature Communications, 6, 10140 https://www.nature.com/articles/ncomms10140#supplementary-information.

    Article  CAS  Google Scholar 

  26. Cheng, A., Hummel, B., Qiu, H., & Caffrey, M. (1998). A simple mechanical mixer for small viscous lipid-containing samples. Chemistry and Physics of Lipids, 95, 11–21. https://doi.org/10.1016/S0009-3084(98)00060-7.

    Article  CAS  PubMed  Google Scholar 

  27. Weierstall, U., James, D., Wang, C., White, T. A., Wang, D., Liu, W., et al. (2014). Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nature Communications, 5, 3309. https://doi.org/10.1038/ncomms4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, W., Ishchenko, A., & Cherezov, V. (2014). Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nature Protocols, 9, 2123–2134. https://doi.org/10.1038/nprot.2014.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: A software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45, 335–341.

    Article  CAS  Google Scholar 

  30. Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme, P., Barty, A., et al. (2011). Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. Acta Crystallographica. Section A, Foundations of Crystallography, 67, 131–140. https://doi.org/10.1107/S0108767310050981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence, J. C., Hunter, M., et al. (2010). Femtosecond protein nanocrystallography-data analysis methods. Optics Express, 18, 5713–5723. https://doi.org/10.1364/OE.18.005713.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X.-P., Vardy, E., et al. (2013). Structural features for functional selectivity at serotonin receptors. Science, 340, 615–619. https://doi.org/10.1126/science.1232808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, W., Wacker, D., Gati, C., Han, G., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors in lipidic cubic phase. Science, 342, 1521–1524. https://doi.org/10.1126/science.1244142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, D., & Caffrey, M. (2011). Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proceedings of the National Academy of Sciences of the United States of America, 108, 8639–8644. https://doi.org/10.1073/pnas.1101815108.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xiang, J., Chun, E., Liu, C., Jing, L., Al-Sahouri, Z., Zhu, L., et al. (2016). Successful strategies to determine high-resolution structures of GPCRs. Trends in Pharmacological Sciences, 37(12), 1055–1069. https://doi.org/10.1016/j.tips.2016.09.009.

    Article  CAS  PubMed  Google Scholar 

  36. Cherezov, V., Clogston, J., Papiz, M. Z., & Caffrey, M. (2006). Room to move: Crystallizing membrane proteins in swollen lipidic mesophases. Journal of Molecular Biology, 357, 1605–1618. https://doi.org/10.1016/j.jmb.2006.01.049.

    Article  CAS  PubMed  Google Scholar 

  37. Aherne, M., Lyons, J. A., & Caffrey, M. (2012). A fast, simple and robust protocol for growing crystals in the lipidic cubic phase. Journal of Applied Crystallography, 45, 1330–1333. https://doi.org/10.1107/S0021889812037880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caffrey, M. (2000). A lipid’s eye view of membrane protein crystallization in mesophases. Current Opinion in Structural Biology, 10, 486–497. https://doi.org/10.1016/S0959-440X(00)00119-6.

    Article  CAS  PubMed  Google Scholar 

  39. Nogly, P., James, D., Wang, D., White, T. A., Zatsepin, N., Shilova, A., et al. (2015). Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ, 2, 168–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported in part by Science Foundation Ireland (12/IA/1255, 16/IA/4435; M.C.), the National Institutes of Health grants R21 DA042298 (W.L.), R01 GM124152 (W.L.), the National Science Foundation (STC award 1231306) (M.C., W.L.), and the Flinn Foundation Seed Grant (W.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu or Martin Caffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Sahouri, Z., Lee, MY., Li, D., Liu, W., Caffrey, M. (2018). The Lipid Cubic Phase as a Medium for the Growth of Membrane Protein Microcrystals. In: Boutet, S., Fromme, P., Hunter, M. (eds) X-ray Free Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-030-00551-1_4

Download citation

Publish with us

Policies and ethics