Principles of Space-Time Coding

  • Joachim SpeidelEmail author
Part of the Signals and Communication Technology book series (SCT)


Figure 23.1 shows the principle block diagram of a MIMO transmitter with space-time encoding. The incoming bit sequence b(n) is fed into the QAM mapper, which periodically maps \(\kappa \) consecutive bits to a QAM symbol \(c(k')\), constituting a \(2^{\kappa }\)-ary QAM. b(n) may contain redundancy bits from a forward error correction encoder, Friedrichs (Error Control Coding. Springer, Berlin, 2017 [1]), Richardson and Urbanke (Modern Coding Theory. Cambridge University Press, Cambridge, 2008 [2]), Moon (Error Correction Coding - Mathematical Methods and Algorithms. Cambridge University Press, Cambridge, 2008 [3]).


  1. 1.
    B. Friedrichs, Error Control Coding (Springer, Berlin, 2017)Google Scholar
  2. 2.
    T. Richardson, R. Urbanke, Modern Coding Theory (Cambridge University Press, Cambridge, 2008)Google Scholar
  3. 3.
    T.K. Moon, Error Correction Coding - Mathematical Methods and Algorithms (Wiley Interscience, New York, 2005)CrossRefGoogle Scholar
  4. 4.
    B. Vucetic, J. Yuan, Space-Time Coding (Wiley, New York, 2003)CrossRefGoogle Scholar
  5. 5.
    S. Alamouti, A simple channel diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16, (1998)Google Scholar
  6. 6.
    Physical channels and modulation, Technical Specifications. TS 36.211, V11.5.0, 3GPP, Technical Report, 2012, p. 61, 234Google Scholar
  7. 7.
    D. Schneider, J. Speidel, L. Stadelmeier, D. Schill, A. Schwager, MIMO for inhome power line communications, in ITG Fachberichte International Conference on Source and Channel Coding (SCC) (2008)Google Scholar
  8. 8.
    L.T. Berger, A. Schwager, P. Pagani, D. Schneider, MIMO Power Line Communications - Narrow and Broadband Standards, EMC and Advanced Processing (CRC press, Boca Raton, 2014)Google Scholar
  9. 9.
    V. Tarokh, H. Jafarkhani, A. Calderbank, Space-time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45, 1456–1467 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    B. Hochwald, T.L. Marzetta, C.B. Papadias, A transmitter diversity scheme for wideband CDMA systems based on space-time spreading. IEEE J. Sel. Areas Commun. 19, 48–60 (2001)CrossRefGoogle Scholar
  11. 11.
    E. Biglieri, D. Divsalar, P. McLane, M. Simon, Introduction to Trellis-coded Modulation with Applications (Macmillan, New York, 1991)zbMATHGoogle Scholar
  12. 12.
    V. Tarokh, N. Seshadri, A. Calderbank, Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44, 744–765 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Paulraj, R. Nabar, D. Gore, Introduction to Space-time Wireless Communications (Cambridge University Press, Cambridge, 2003)Google Scholar
  14. 14.
    G. Foschini, Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Syst. Tech. J. 1, 41–59 (1996)CrossRefGoogle Scholar
  15. 15.
    S. Ten Brink, J. Speidel, R.-H. Yan, Iterativeerative demapping for QPSK modulation. Electron. Lett. 34, 1459–1460 (1998)CrossRefGoogle Scholar
  16. 16.
    G. Foschini, M. Gans, On limits of wireless communications in a fading environment when using multiple antennas. IEEE Wirel. Pers. Commun. 6, 311–335 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding, in International Conference on Communications ICC (1993)Google Scholar
  18. 18.
    J. Hagenauer, The Turbo principle: tutorial introduction and state of the art, in Proceedings of 1st International Symposium on Turbo codes (1997)Google Scholar
  19. 19.
    J. Hagenauer, E. Offer, L. Papke, Iterative decoding of binary block and convolutional codes. IEEE Trans. Inf. Theory 42, 429–445 (1996)CrossRefGoogle Scholar
  20. 20.
    L. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20, 284–287 (1974)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Hagenauer, P. Hoeher, A Viterbi algorithm with soft-decision outputs and its applications, in IEEE International Conference on Global Communications (GLOBECOM) (1989)Google Scholar
  22. 22.
    S. Ten Brink, Convergence of iterative decoding. Electron. Lett. 35, 806–808 (1999)CrossRefGoogle Scholar
  23. 23.
    S. Ten Brink, Designing iterative decoding schemes with the extrinsic information transfer chart. AEÜ Int. J. Electron. Commun. 54, 389–398 (2000)Google Scholar
  24. 24.
    S. Ten Brink, Design of concatenated coding schemes based on iterative decoding convergence, Ph.D. dissertation, University of Stuttgart, Institute of Telecommunications, Shaker Publication, ISBN 3-8322-0684-1 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of TelecommunicationsUniversity of StuttgartStuttgartGermany

Personalised recommendations