Advertisement

The Importance of Information Flow Regulation in Preferentially Foraging Robot Swarms

  • Lenka PitonakovaEmail author
  • Richard Crowder
  • Seth Bullock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11172)

Abstract

Instead of committing to the first source of reward that it discovers, an agent engaged in “preferential foraging” continues to choose between different reward sources in order to maximise its foraging efficiency. In this paper, the effect of preferential source selection on the performance of robot swarms with different recruitment strategies is studied. The swarms are tasked with foraging from multiple sources in dynamic environments where worksite locations change periodically and thus need to be re-discovered. Analysis indicates that preferential foraging leads to a more even exploitation of resources and a more efficient exploration of the environment provided that information flow among robots, that results from recruitment, is regulated. On the other hand, preferential selection acts as a strong positive feedback mechanism for favouring the most popular reward source when robots exchange information rapidly in a small designated area, preventing the swarm from foraging efficiently and from responding to changes.

Notes

Acknowledgments

This work was supported by EPSRC grants EP/G03690X/1, EP/N509747/1 and EP/R0047571.

References

  1. 1.
    Bonani, M., et al.: The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 4187–4193. IEEE, Piscataway (2010)Google Scholar
  2. 2.
    De Marco, R., Farina, W.M.: Trophallaxis in forager honeybees Apis mellifera: Resource uncertainty enhances begging contacts? J. Comp. Physiol. A 189, 125–134 (2003).  https://doi.org/10.1007/s00359-002-0382-yCrossRefGoogle Scholar
  3. 3.
    Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1), 1–33 (2014)CrossRefGoogle Scholar
  4. 4.
    Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73–96 (2011)CrossRefGoogle Scholar
  5. 5.
    Gill, F.B., Wolf, L.L.: Nonrandom foraging by sunbirds in a patchy environment. Ecology 58(6), 1284–1296 (1997)CrossRefGoogle Scholar
  6. 6.
    Granovskiy, B., Latty, T., Duncan, M., Sumpter, D.J.T., Beekman, M.: How dancing honey bees keep track of changes: The role of inspector bees. Behav. Ecol. 23(3), 588–596 (2012).  https://doi.org/10.1093/beheco/ars002CrossRefGoogle Scholar
  7. 7.
    Gregson, A.M., Hart, A.G., Holcombe, M., Ratnieks, F.L.: Partial nectar loads as a cause of multiple nectar transfer in the honey bee (Apis mellifera): a simulation model. J. Theor. Biol. 222(1), 1–8 (2003).  https://doi.org/10.1016/S0022-5193(02)00487-3CrossRefGoogle Scholar
  8. 8.
    Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Collective decision-making based on social odometry. Neural Comput. Appl. 19(6), 807–823 (2010)CrossRefGoogle Scholar
  9. 9.
    Hecker, J.P., Moses, M.E.: Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intell. 9, 43–70 (2015)Google Scholar
  10. 10.
    Hoff, N., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot swarms using only local communication. In: Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO 2010), pp. 123–130. IEEE, Piscataway (2010)Google Scholar
  11. 11.
    Hrolenok, B., Luke, S., Sullivan, K., Vo, C.: Collaborative foraging using beacons. In: van der Hoek, W., Kaminka, G.A., Lesperance, Y., Luck, M., Sen, S. (eds.) Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 1197–1204. IFAAMAS, Richland (2010)Google Scholar
  12. 12.
    Jones, C., Mataric, M.J.: Adaptive division of labor in large-scale minimalist multi-robot systems. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974. IEEE, Piscataway (2003)Google Scholar
  13. 13.
    Krause, J., Godin, J.G.J.: Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behav. Ecol. 7(3), 264–271 (1996)CrossRefGoogle Scholar
  14. 14.
    Krieger, M.J.B., Billeter, J.B.: The call of duty: self-organised task allocation in a population of up to twelve mobile robots. Rob. Auton. Syst. 30(1–2), 65–84 (2000)CrossRefGoogle Scholar
  15. 15.
    Lachlan, R., Crooks, L., Laland, K.: Who follows whom? Shoaling preferences and social learning of foraging information in guppies. Anim. Behav. 56(1), 181–190 (1998).  https://doi.org/10.1006/anbe.1998.0760CrossRefGoogle Scholar
  16. 16.
    Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Rob. Res. 25, 225–242 (2006)CrossRefGoogle Scholar
  17. 17.
    Michelena, P., Jeanson, R., Deneubourg, J.L., Sibbald, A.M.: Personality and collective decision-making in foraging herbivores. Philos. Trans. R. Soc. Lond. B Biol. Sci. 277(1684), 1093–1099 (2010).  https://doi.org/10.1098/rspb.2009.1926CrossRefGoogle Scholar
  18. 18.
    Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
  19. 19.
    Pinter-Wollman, N., et al.: Harvester ants use interactions to regulate forager activation and availability. Anim. Behav. 86(1), 197–207 (2013)CrossRefGoogle Scholar
  20. 20.
    Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)CrossRefGoogle Scholar
  21. 21.
    Pitonakova, L., Crowder, R., Bullock, S.: Behaviour-data relations modelling language for multi-robot control algorithms. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), pp. 727–732. IEEE, Piscataway (2017)Google Scholar
  22. 22.
    Pitonakova, L., Crowder, R., Bullock, S.: The Information-Cost-Reward framework for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2018).  https://doi.org/10.1007/s11721-017-0148-3CrossRefGoogle Scholar
  23. 23.
    Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2), 75–102 (2015)CrossRefGoogle Scholar
  24. 24.
    Sarker, M.O.F., Dahl, T.S.: Bio-Inspired communication for self-regulated multi-robot systems. In: Yasuda, T. (ed.) Multi-Robot Systems, Trends and Development, pp. 367–392. InTech (2011)Google Scholar
  25. 25.
    Schmickl, T., Crailsheim, K.: Throphallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton. Robots 25(1), 171–188 (2008)CrossRefGoogle Scholar
  26. 26.
    Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34(1), 51–62 (1994).  https://doi.org/10.1007/BF00175458CrossRefGoogle Scholar
  27. 27.
    Seeley, T.D., Camazine, S., Sneyd, J.: Collective decision-making in honey bees: how colonles choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277–290 (1991)CrossRefGoogle Scholar
  28. 28.
    Sumpter, D.J.T., Beekman, M.: From nonlinearity to optimality: pheromone trail foraging by ants. Anim. Behav. 66(2), 273–280 (2003).  https://doi.org/10.1006/anbe.2003.2224CrossRefGoogle Scholar
  29. 29.
    Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 45–52. ACM, New York (2014)Google Scholar
  30. 30.
    Wawerla, J., Vaughan, R.T.: A fast and frugal method for team-task allocation in a multi-robot transportation system. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 1432–1437. IEEE, Piscataway (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lenka Pitonakova
    • 1
    Email author
  • Richard Crowder
    • 2
  • Seth Bullock
    • 1
  1. 1.Department of Computer Science, Faculty of EngineeringUniversity of BristolBristolUK
  2. 2.Department of Electronics and Computer Science, Faculty of Physical and Applied SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations