Advertisement

Quality-Sensitive Foraging by a Robot Swarm Through Virtual Pheromone Trails

  • Anna Font Llenas
  • Mohamed S. Talamali
  • Xu Xu
  • James A. R. Marshall
  • Andreagiovanni ReinaEmail author
Conference paper
  • 1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11172)

Abstract

Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides.

Notes

Acknowledgments

This work was funded by the ERC under the EU-H2020 research and innovation programme (grant agreement 647704). The authors thank Michael Port, Alex Cope, and Carlo Pinciroli for their crucial help and support in tackling the hardware and software challenges of this project.

References

  1. 1.
    Arvin, F., Yue, S., Xiong, C.: Colias-\(\phi \): an autonomous micro robot for artificial pheromone communication. Int. J. Mech. Eng. Robot. Res. 4(4), 349–353 (2015)Google Scholar
  2. 2.
    Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: Proceedings of the IEEE/RSJ International Conference on Robotics and Automation, ICRA 2011, pp. 378–385. IEEE Press (2011)Google Scholar
  3. 3.
    Bosien, A., Turau, V., Zambonelli, F.: Approaches to fast sequential inventory and path following in RFID-enriched environments. Int. J. Radio Freq. Identif. Technol. Appl. 4(1), 28 (2012)Google Scholar
  4. 4.
    Campo, A., Dorigo, M.: Efficient multi-foraging in swarm robotics. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS, vol. 4648, pp. 696–705. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74913-4_70CrossRefGoogle Scholar
  5. 5.
    Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm of robots. Biol. Cybern. 103(5), 339–352 (2010)CrossRefGoogle Scholar
  6. 6.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theoret. Biol. 218(1), 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do ants “behave” like molecules? Phys. Life Rev. 3(3), 162–187 (2006)CrossRefGoogle Scholar
  8. 8.
    Detrain, C., Deneubourg, J.L.: Collective decision-making and foraging patterns in ants and honeybees. Adv. Insect Physiol. 35(08), 123–173 (2008)CrossRefGoogle Scholar
  9. 9.
    Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with Kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44427-7_16CrossRefGoogle Scholar
  10. 10.
    Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73–96 (2011)CrossRefGoogle Scholar
  11. 11.
    Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gambardella, L.M.: Communication assisted navigation in robotic swarms: self-organization and cooperation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, pp. 4981–4988. IEEE Press (2011)Google Scholar
  12. 12.
    Dussutour, A., Nicolis, S.C., Shephard, G., Beekman, M., Sumpter, D.J.T.: The role of multiple pheromones in food recruitment by ants. J. Exp. Biol. 212(15), 2337–2348 (2009)CrossRefGoogle Scholar
  13. 13.
    Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evolution of self-organized task specialization in robot swarms. PLoS Comput. Biol. 11(8), 1–21 (2015)CrossRefGoogle Scholar
  14. 14.
    Flanagan, T.P., Letendre, K., Burnside, W.R., Fricke, G.M., Moses, M.E.: Quantifying the effect of colony size and food distribution on harvester ant foraging. PLoS One 7(7), e39427 (2012)CrossRefGoogle Scholar
  15. 15.
    Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by concentration of pheromone trail for multiple robots. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 283–290. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87527-7_28CrossRefGoogle Scholar
  16. 16.
    Fujisawa, R., Dobata, S., Sugawara, K., Matsuno, F.: Designing pheromone communication in swarm robotics: group foraging behavior mediated by chemical substance. Swarm Intell. 8(3), 227–246 (2014)CrossRefGoogle Scholar
  17. 17.
    Garnier, S., Combe, M., Jost, C., Theraulaz, G.: Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Comput. Biol. 9(3), e1002903 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Garnier, S., Tâche, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land: an experimental setup for the study of ant-like robots. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, pp. 37–44. IEEE Press (2007)Google Scholar
  19. 19.
    Goss, S., Deneubourg, J.L., Bourgine, P., Varela, E.: Harvesting by a group of robots. In: 1st European Conference on Artificial Life, pp. 195–204. MIT Press, Cambridge (1992)Google Scholar
  20. 20.
    Hamann, H., Wörn, H.: An analytical and spatial model of foraging in a swarm of robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp. 43–55. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71541-2_4CrossRefGoogle Scholar
  21. 21.
    Hecker, J.P., Letendre, K., Stolleis, K., Washington, D., Moses, M.E.: Formica ex Machina: ant swarm foraging from physical to virtual and back again. In: Dorigo, M., et al. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 252–259. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32650-9_25CrossRefGoogle Scholar
  22. 22.
    Heredia, A., Detrain, C.: Influence of seed size and seed nature on recruitment in the polymorphic harvester ant Messor barbarus. Behav. Process. 70(3), 289–300 (2005)CrossRefGoogle Scholar
  23. 23.
    Herianto, Kurabayashi, D.: Realization of an artificial pheromone system in random data carriers using RFID tags for autonomous navigation. In: Proceedings of the IEEE/RSJ International Conference on Robotics and Automation, ICRA 2009, pp. 2288–2293. IEEE Press (2009)Google Scholar
  24. 24.
    Herianto, Sakakibara, T., Kurabayashi, D.: Artificial pheromone system using RFID for navigation of autonomous robots. J. Bion. Eng. 4(4), 245–253 (2007)CrossRefGoogle Scholar
  25. 25.
    Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Martinoli, A. (ed.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 417–430. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, Cambridge (1990)CrossRefGoogle Scholar
  27. 27.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59496-5_337CrossRefGoogle Scholar
  28. 28.
    Jeanson, R., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Modulation of individual behavior and collective decision-making during aggregation site selection by the ant Messor barbarus. Behav. Ecol. Sociobiol. 55(4), 388–394 (2004)CrossRefGoogle Scholar
  29. 29.
    Khaliq, A.A., Di Rocco, M., Saffiotti, A.: Stigmergic algorithms for multiple minimalistic robots on an RFID floor. Swarm Intell. 8(3), 199–225 (2014)CrossRefGoogle Scholar
  30. 30.
    Macarthur, R.H., Pianka, E.R.: On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966)CrossRefGoogle Scholar
  31. 31.
    Mailleux, A.C., Deneubourg, J.L., Detrain, C.: Regulation of ants’ foraging to resource productivity. Proc. Roy. Soc. Lond. B: Biol. Sci. 270(1524), 1609–1616 (2003)CrossRefGoogle Scholar
  32. 32.
    Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through RFID technology. In: Proceedings of the 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 281–288. IEEE Press (2005)Google Scholar
  33. 33.
    Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with RFID tags. ACM Trans. Auton. Adapt. Syst. 2(2), 4 (2007)CrossRefGoogle Scholar
  34. 34.
    Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: a feasible visual emulation of pheromone trails for swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15461-4_8CrossRefGoogle Scholar
  35. 35.
    Nicolis, S.C., Deneubourg, J.L.: Emerging patterns and food recruitment in ants: an analytical study. J. Theoret. Biol. 198(4), 575–592 (1999)CrossRefGoogle Scholar
  36. 36.
    Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009)CrossRefGoogle Scholar
  37. 37.
    Olsson, O., Brown, J.S., Helf, K.L.: A guide to central place effects in foraging. Theoret. Popul. Biol. 74(1), 22–33 (2008)CrossRefGoogle Scholar
  38. 38.
    Orians, G.H., Pearson, N.E.: On the theory of central place foraging. Anal. Ecol. Syst. 154–177 (1979)Google Scholar
  39. 39.
    Payton, D.W., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone robotics. Auton. Robots 11(3), 319–324 (2001)CrossRefGoogle Scholar
  40. 40.
    Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating Kilobots within ARGoS: models and experimental validation. In: Dorigo, M., et al. (eds.) ANTS 2018. Lecture Notes in Computer Science, vol. 11172, pp. 176–187. Springer, Heidelberg (2018)Google Scholar
  41. 41.
    Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)CrossRefGoogle Scholar
  42. 42.
    Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., Birattari, M.: Task partitioning in a robot swarm: object retrieval as a sequence of subtasks with direct object transfer. Artif. Life 20(3), 291–317 (2014)CrossRefGoogle Scholar
  43. 43.
    Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)CrossRefGoogle Scholar
  44. 44.
    Pitonakova, L., Crowder, R., Bullock, S.: The Information-Cost-Reward framework for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2018)CrossRefGoogle Scholar
  45. 45.
    Purnamadjaja, A.H., Russell, R.A.: Guiding robots’ behaviors using pheromone communication. Auton. Robots 23(2), 113–130 (2007)CrossRefGoogle Scholar
  46. 46.
    Pyke, G.H.: Optimal foraging theory: a critical review. Annu. Rev. Ecol. Evol. Syst. 15, 523–75 (1984)CrossRefGoogle Scholar
  47. 47.
    Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017)CrossRefGoogle Scholar
  48. 48.
    Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2–3), 75–102 (2015)CrossRefGoogle Scholar
  49. 49.
    Robinson, E.J., Ratnieks, F.L., Holcombe, M.: An agent-based model to investigate the roles of attractive and repellent pheromones in ant decision making during foraging. J. Theoret. Biol. 255(2), 250–258 (2008)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)CrossRefGoogle Scholar
  51. 51.
    Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5), 1175–1188 (2016)CrossRefGoogle Scholar
  52. 52.
    Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34(1), 51–62 (1994)CrossRefGoogle Scholar
  53. 53.
    Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of robots. Swarm Intell. 5(2), 97–119 (2011)CrossRefGoogle Scholar
  54. 54.
    Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004, vol. 3, pp. 3074–3079. IEEE Press (2004)Google Scholar
  55. 55.
    Svennebring, J., Koenig, S.: Building terrain-covering ant robots: a feasibility study. Auton. Robots 16(3), 313–332 (2004)CrossRefGoogle Scholar
  56. 56.
    Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116 (1999)CrossRefGoogle Scholar
  57. 57.
    Ulam, P., Balch, T.: Using optimal foraging models to evaluate learned robotic foraging behavior. Adapt. Behav. 12(3–4), 213–222 (2004)CrossRefGoogle Scholar
  58. 58.
    Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 1–22 (2018)Google Scholar
  59. 59.
    Werger, B.B., Matarić, M.J.: Robotic “food” chains: externalization of state and program for minimal-agent foraging. In: From Animals to Animats 4. Proceedings of the 4th International Conference on Simulation of Adaptive Behavior, SAB 1996, pp. 625–634. MIT Press, Cambridge (1996)Google Scholar
  60. 60.
    Wilson, E.O.: Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith): the organization of mass-foraging. Anim. Behav. 10(1–2), 134–147 (1962)CrossRefGoogle Scholar
  61. 61.
    Winfield, A.F.T.: Foraging robots. In: Encyclopedia of Complexity and System Science, pp. 3682–3700. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-0-387-30440-3

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SheffieldSheffieldUK
  2. 2.Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldUK
  3. 3.MERISheffield Hallam UniversitySheffieldUK

Personalised recommendations