Intelligent Livestock Feeding System by Means of Silos with IoT Technology

  • Alfonso González-BrionesEmail author
  • Roberto Casado-Vara
  • Sergio Márquez
  • Javier Prieto
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 802)


Intelligent agriculture has the potential of increasing sustainability and productivity in the field of agriculture and livestock, through efficient and precise use of resources. Thus, this technology gives the possibility of promoting growth in developing countries through automation and control of repetitive farming activities, such as monitoring the level of water and feed in the feeders, which allows farmers to save time. However, the implementation of an automatic feed and water level control system in a livestock enclosure requires a large investment in silo scales, which may be too expensive for an SME. Thanks to the evolution of IoT devices, it is possible to reduce the cost of this implementation while integrating new functionalities and interactions through the interconnection of devices with cloud solutions. This work presents a new system that allows to monitor the quantity and quality of food and water in a silo by estimating volume in real time. Moreover, it has an additional functionality; temperature and humidity estimation in a livestock enclosure. The hardware system will be managed by a multi-agent system in charge of the processes of managing the data, managing the quantity of food and water supplied to each feeder. The use of a multi-agent architecture allows for the development of a distributed solution that provides great possibilities for future analysis, for example through a massive data analysis. The case study results demonstrate the effectiveness of the system, it has provided the ideal amount of feed and water to the animals, controlling the quality of grain and water, reducing the number of colics caused by overfeeding. In addition, the time the farmer must spend on the farm reduces considerably.


Sensor-based monitoring Ambiental intelligent Smart silo IoT Multi-agent system 



This work has been partially supported by the Agreement between the Agricultural Technology Institute of Castile and León, Hermi Gestión, S.L., and the University of Salamanca to conduct research activities on the development of a farm 4.0 model in the rabbit meat production sector.


  1. 1.
    Olmstead, A.L., Rhode, P.W.: Reshaping the landscape: the impact and diffusion of the tractor in American agriculture, 1910–1960. J. Econ. Hist. 61(3), 663–698 (2001)Google Scholar
  2. 2.
    Corchado, J.M., Rodríguez, S., Chamoso, P., González, A.: Experimental communications network and applications within the Smart Village ProjectGoogle Scholar
  3. 3.
    Corchado, J.M., Rodríguez, S., Chamoso, P., González, A.: Virtual organization designed for recycling waste energy from power plantsGoogle Scholar
  4. 4.
    González-Briones, A., Chamoso, P., Rodríguez, S., Yoe, H., Corchado, J.M.: Reuse of waste energy from power plants in greenhouses through MAS-based architecture. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  5. 5.
    Briones, A.G., Chamoso, P., Rivas, A., Rodríguez, S., Yoe, H., Corchado, J.M.: A MAS based architecture to reuse waste energy from power plants in indoor peppers cultivationGoogle Scholar
  6. 6.
    Casado-Vara, R., González-Briones, A., Prieto, J., Corchado, J.M.: Smart contract for monitoring and control of logistics activities: pharmaceutical utilities case study. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 509–517. Springer, Cham, June 2018Google Scholar
  7. 7.
    González-Briones, A., Chamoso, P., Yoe, H., Corchado, J.M.: GreenVMAS: virtual organization based platform for heating greenhouses using waste energy from power plants. Sensors 18(3), 861 (2018)CrossRefGoogle Scholar
  8. 8.
    González-Briones, A., Prieto, J., Corchado, J.M., Demazeau, Y.: EnerVMAS: virtual agent organizations to optimize energy consumption using intelligent temperature calibration. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 387–398. Springer, Cham, June 2018Google Scholar
  9. 9.
    Rivas, A., Chamoso, P., González-Briones, A., Corchado, J.: Detection of cattle using drones and convolutional neural networks. Sensors 18(7), 2048 (2018)CrossRefGoogle Scholar
  10. 10.
    González-Briones, A., Castellanos-Garzón, J.A., Mezquita Martín, Y., Prieto, J., Corchado, J.M.: A framework for knowledge discovery from wireless sensor networks in rural environments: a crop irrigation systems case study. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  11. 11.
    Ryu, M., Yun, J., Miao, T., Ahn, I.Y., Choi, S.C., Kim, J.: Design and implementation of a connected farm for smart farming system. In: 2015 IEEE SENSORS, pp. 1–4. IEEE, November 2015Google Scholar
  12. 12.
    Kulatunga, C., Shalloo, L., Donnelly, W., Robson, E., Ivanov, S.: Opportunistic wireless networking for smart dairy farming. IT Prof. 19(2), 16–23 (2017)CrossRefGoogle Scholar
  13. 13.
    Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain improves the supply chain: case study alimentary supply chain. Procedia Comput. Sci. 134, 393–398 (2018)CrossRefGoogle Scholar
  14. 14.
    Casado-Vara, R., de la Prieta, F., Prieto, J., Corchado, J.M.: Blockchain framework for IoT data quality via edge computing. In: Proceedings of the 1st Workshop on Blockchain-Enabled Networked Sensor Systems, pp. 19–24. ACM, November 2018Google Scholar
  15. 15.
    Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., Youssef, M.M.: Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res. Int. 48(2), 410–427 (2012)CrossRefGoogle Scholar
  16. 16.
    Casado-Vara, R., Prieto-Castrillo, F., Corchado, J.M.: A game theory approach for cooperative control to improve data quality and false data detection in WSN. Int. J. Robust Nonlinear Control 28(16), 5087–5102 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Agrawal, H., Prieto, J., Ramos, C., Corchado, J.M.: Smart feeding in farming through IoT in silos. In: The International Symposium on Intelligent Systems Technologies and Applications, pp. 355–366. Springer, Cham, September 2016Google Scholar
  18. 18.
    González-Briones, A., Prieto, J., De La Prieta, F., Herrera-Viedma, E., Corchado, J.M.: Energy optimization using a case-based reasoning strategy. Sensors (Basel) 18(3), 865 (2018). Scholar
  19. 19.
    González-Briones, A., Chamoso, P., De La Prieta, F., Demazeau, Y., Corchado, J.M.: Agreement technologies for energy optimization at home. Sensors (Basel) 18(5), 1633 (2018). Scholar
  20. 20.
    González-Briones, A., Valdeolmillos, D., Casado-Vara, R., Chamoso, P., Coria, J.A.G., Herrera-Viedma, E., Corchado, J.M.: GarbMAS: simulation of the application of gamification techniques to increase the amount of recycled waste through a multi-agent system. In: International Symposium on Distributed Computing and Artificial Intelligence, pp. 332–343. Springer, Cham, June 2018Google Scholar
  21. 21.
    Chamoso, P., González-Briones, A., Rodríguez, S., Corchado, J.M.: Tendencies of technologies and platforms in smart cities: a state-of-the-art review. Wirel. Commun. Mob. Comput. (2018)Google Scholar
  22. 22.
    González-Briones, A., De La Prieta, F., Mohamad, M., Omatu, S., Corchado, J.: Multi-agent systems applications in energy optimization problems: a state-of-the-art review. Energies 11(8), 1928 (2018)CrossRefGoogle Scholar
  23. 23.
    Jian, F., Jayas, D.S., White, N.D.: Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. J. Stored Prod. Res. 45(2), 82–90 (2009)CrossRefGoogle Scholar
  24. 24.
    Pixton, S.W., Griffiths, H.J.: Diffusion of moisture through grain. J. Stored Prod. Res. 7(3), 133–152 (1971)CrossRefGoogle Scholar
  25. 25.
    González-Briones, A., Chamoso, P., Prieto, J., Corchado, J.M., Yoe, H.: Reuse of wasted thermal energy in power plants for agricultural crops by means of multi-agent approach. In: 2018 International Conference on Smart Energy Systems and Technologies (SEST), Sevilla, Spain, pp. 1–6 (2018)Google Scholar
  26. 26.
    Casado-Vara, R., Corchado, J.M.: Blockchain for democratic voting: how blockchain could cast off voter fraud. Orient. J. Comp. Sci. Technol. 11(1) (2018)CrossRefGoogle Scholar
  27. 27.
    Casado-Vara, R., Prieto, J., Corchado, J.M.: How blockchain could improve fraud detection in power distribution grid. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 67–76. Springer, Cham, June 2018zbMATHGoogle Scholar
  28. 28.
    Briones, A.G., Chamoso, P., Barriuso, A.: Review of the main security problems with multi-agent systems used in e-commerce applications. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 5(3), 55–61 (2016)Google Scholar
  29. 29.
    Casado-Vara, R., Chamoso, P., De la Prieta, F., Prieto, J., Corchado, J.M.: Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management. Inf. Fusion 49, 227–239 (2019)CrossRefGoogle Scholar
  30. 30.
    Casado-Vara, R., Novais, P., Gil, A.B., Prieto, J., Corchado, J.M.: Distributed continuous-time fault estimation control for multiple devices in IoT networks. IEEE Access 7, 11972–11984 (2019)CrossRefGoogle Scholar
  31. 31.
    Chamoso, P., González-Briones, A., Rivas, A., De La Prieta, F., Corchado, J.M.: Social computing in currency exchange. Knowl. Inf. Syst. (2019)Google Scholar
  32. 32.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl.-Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  33. 33.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016). Scholar
  34. 34.
    Chamoso, P., Rodríguez, S., de la Prieta, F., Bajo, J.: Classification of retinal vessels using a collaborative agent-based architecture. AI Commun. (Preprint) 31(5), 427–444 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Gazafroudi, A.S., Corchado, J.M., Kean, A., Soroudi, A.: Decentralized flexibility management for electric vehicles. IET Renew. Power Gener. (2019).
  36. 36.
    Gazafroudi, A.S., Soares, J., Ghazvini, M.A.F., Pinto, T., Vale, Z., Corchado, J.M.: Stochastic interval-based optimal offering model for residential energy management systems by household owners. Int. J. Electr. Power Energy Syst. 105, 201–219 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alfonso González-Briones
    • 1
    Email author
  • Roberto Casado-Vara
    • 1
  • Sergio Márquez
    • 1
  • Javier Prieto
    • 1
  • Juan M. Corchado
    • 1
    • 2
    • 3
  1. 1.BISITE Research GroupUniversity of Salamanca, Edificio I+D+iSalamancaSpain
  2. 2.Department of Electronics, Information and Communication, Faculty of EngineeringOsaka Institute of TechnologyOsakaJapan
  3. 3.Pusat Komputeran dan InformatikUniversiti Malaysia KelantanKota BharuMalaysia

Personalised recommendations