Skip to main content

Multi-objective Fuzzy Geometric Programming Problem Using Fuzzy Geometry

  • Chapter
  • First Online:
Book cover Trends in Mathematics and Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 796))

  • 386 Accesses

Abstract

This paper proposes a methodology to obtain fuzzy Pareto optimal frontier of multi-objective fuzzy geometric programming problem. The method that we derive here does not depend on the degree-of-difficulty of the problem under consideration. A study on the fuzzy convexity of the posynomials involved is also given here. Fuzzy geometric and algebraic approaches have been considered for the said optimization problem and is supported with a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beightler, C.S., Phillips, D.T.: Applied Geometric Programming. Wiley, New York (1976)

    Google Scholar 

  2. Cao, B.Y.: Fuzzy Geometric Programming. Applied Optimization, Springer (2002)

    Google Scholar 

  3. Choi, J., Bricker, D.: Effectiveness of geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10, 957–961 (1996)

    Article  Google Scholar 

  4. Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dufflin, R.J., Peterson, E.L., Zener, C.: Geometric Programming: Theory and Applications. Willey, New York (1967)

    Google Scholar 

  6. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)

    Article  MathSciNet  Google Scholar 

  7. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)

    Article  MathSciNet  Google Scholar 

  8. Ghosh, D., Chakraborty, D.: On Fuzzy Ideal Cone Method to Capture Entire Fuzzy Non dominated Set of Fuzzy Multi-criteria Optimization Problems with Fuzzy Parameters. Facets of Uncertainties and Applications, pp. 249–260. Springer, India (2015)

    Google Scholar 

  9. Jung, H., Klein, C.: Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132, 628–642 (2001)

    Article  Google Scholar 

  10. Kim, D., Lee, W.: Optimal join pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109, 212–227 (1998)

    Article  Google Scholar 

  11. Kortanek, K., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Programm. 76, 155–181 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Liu, S.T.: Geometric programming with fuzzy parameters in engineering optimization. Internat. J. Approx. Reason. 46(3), 484–498 (2007)

    Article  Google Scholar 

  13. Lui, S.: Posynomial geometric programming with interval exponents and coefficients. Eur. J. Oper. Res. 186, 17–27 (2008)

    Article  MathSciNet  Google Scholar 

  14. Qu, S., Zhang, K., Wang, F.: A global optimization using linear relaxation for generalized geometric programming. Eur. J. Oper. Res. 190, 345–356 (2008)

    Article  MathSciNet  Google Scholar 

  15. Peterson, E.: The fundamental relations between geometric programming duality, parametric programming duality and ordinary Lagrangian duality. Ann. Oper. Res. 105, 109–153 (2001)

    Article  MathSciNet  Google Scholar 

  16. Rajgopal, J., Bricker, D.: Solving posynomial geometric programming problems via generalized linear programming. Computat. Optim. Appl. 21, 95–109 (2002). World Appl. Sci. J. 7(1): 94–101 (2009)

    Google Scholar 

  17. Shivanian, E., Khorram, E.: Monomial geometric programming with fuzzy relation in equality constraints with max-product composition. Comput. Ind. Eng. 56, 1386–1392 (2009)

    Article  Google Scholar 

  18. Yang, H., Bricker, D.: Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103, 230–241 (1997)

    Article  Google Scholar 

  19. Zhou, X.G., Yang, X.P., Cao, B.Y.: Posynomial geometric programming problem subject to max-min fuzzy relation equations. Inf. Sci. 328, 15–25 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

First two authors gratefully acknowledge the financial support provided by Department of Science & Technology, India (SR/S4/MS:858/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjani Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, D., Chatterjee, A., Aishwaryaprajna (2019). Multi-objective Fuzzy Geometric Programming Problem Using Fuzzy Geometry. In: Cornejo, M., Kóczy, L., Medina, J., De Barros Ruano, A. (eds) Trends in Mathematics and Computational Intelligence. Studies in Computational Intelligence, vol 796. Springer, Cham. https://doi.org/10.1007/978-3-030-00485-9_14

Download citation

Publish with us

Policies and ethics