Skip to main content

Early Commenting Features for Emotional Reactions Prediction

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11147)

Abstract

Nowadays, one of the main sources for people to access and read news are social media platforms. Different types of news trigger different emotional reactions to users who may feel happy or sad after reading a news article. In this paper, we focus on the problem of predicting emotional reactions that are triggered on users after they read a news post. In particular, we try to predict the number of emotional reactions that users express regarding a news post that is published on social media. In this paper, we propose features extracted from users’ comments published about a news post shortly after its publication to predict users’ the triggered emotional reactions. We explore two different sets of features extracted from users’ comments. The first group represents the activity of users in publishing comments whereas the second refers to the comments’ content. In addition, we combine the features extracted from the comments with textual features extracted from the news post. Our results show that features extracted from users’ comments are very important for the emotional reactions prediction of news posts and that combining textual and commenting features can effectively address the problem of emotional reactions prediction.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00479-8_14
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00479-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://www.facebook.com/.

  2. 2.

    https://twitter.com/.

  3. 3.

    https://code.google.com/p/word2vec/.

  4. 4.

    https://www.facebook.com/nytimes/.

  5. 5.

    https://developers.facebook.com/.

  6. 6.

    Facebook allows users to select an emotional reaction with regards to a post.

  7. 7.

    We use Random Forest because it obtained the best results on the run trained on terms among the various classifiers that we tried including SVM and Logistic Regression.

  8. 8.

    http://scikit-learn.org/.

References

  1. Alam, F., Celli, F., Stepanov, E.A., Ghosh, A., Riccardi, G.: The social mood of news: self-reported annotations to design automatic mood detection systems. In: PEOPLES 2016, pp. 143–152 (2016)

    Google Scholar 

  2. Aliannejadi, M., Crestani, F.: Venue suggestion using social-centric scores. CoRR abs/1803.08354 (2018)

    Google Scholar 

  3. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: HLT 2005, pp. 579–586 (2005)

    Google Scholar 

  4. Arapakis, I., Cambazoglu, B.B., Lalmas, M.: On the feasibility of predicting popular news at cold start. J. Assoc. Inf. Sci. Technol. 68(5), 1149–1164 (2017)

    CrossRef  Google Scholar 

  5. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: ICWSM 2012, pp. 26–33 (2012)

    Google Scholar 

  6. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-probability Series (1984)

    Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  Google Scholar 

  8. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW 2014, pp. 925–936 (2014)

    Google Scholar 

  9. Clos, J., Bandhakavi, A., Wiratunga, N., Cabanac, G.: Predicting emotional reaction in social networks. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 527–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_44

    CrossRef  Google Scholar 

  10. Gerani, S., Carman, M., Crestani, F.: Aggregation methods for proximity-based opinion retrieval. ACM Trans. Inf. Syst. (TOIS) 30(4), 1–36 (2012)

    CrossRef  Google Scholar 

  11. Giachanou, A., Crestani, F.: Like it or not: a survey of twitter sentiment analysis methods. ACM Comput. Surv. 49(2), 28:1–28:41 (2016)

    CrossRef  Google Scholar 

  12. Giachanou, A., Harvey, M., Crestani, F.: Topic-specific stylistic variations for opinion retrieval on Twitter. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 466–478. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_34

    CrossRef  Google Scholar 

  13. Giachanou, A., Rosso, P., Mele, I., Crestani, F.: Emotional influence prediction of news posts. In: ICWSM 2018 (2018)

    Google Scholar 

  14. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical report, Standford (2009)

    Google Scholar 

  15. Goel, P., Kulshreshtha, D., Jain, P., Shukla, K.K.: Prayas at EmoInt 2017: an ensemble of deep neural architectures for emotion intensity prediction in tweets. In: WASSA 2017, vol. 17, pp. 58–65 (2017)

    Google Scholar 

  16. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD 2004, pp. 168–177 (2004)

    Google Scholar 

  17. Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50(1), 723–762 (2014)

    CrossRef  Google Scholar 

  18. Lee, J.G., Moon, S., Salamatian, K.: Modeling and predicting the popularity of online contents with cox proportional hazard regression model. Neurocomputing 76(1), 134–145 (2012)

    CrossRef  Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS 2013, USA, pp. 3111–3119 (2013)

    Google Scholar 

  20. Paltoglou, G., Giachanou, A.: Opinion retrieval: searching for opinions in social media. In: Paltoglou, G., Loizides, F., Hansen, P. (eds.) Professional Search in the Modern World. LNCS, vol. 8830, pp. 193–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12511-4_10

    CrossRef  Google Scholar 

  21. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)

    CrossRef  Google Scholar 

  22. Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: EmpaTweet: annotating and detecting emotions on Twitter. In: LREC 2012, pp. 3806–3813 (2012)

    Google Scholar 

  23. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    Google Scholar 

  24. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. SIGKDD Explor. Newsl. 19(1), 22–36 (2017)

    CrossRef  Google Scholar 

  25. Shulman, B., Sharma, A., Cosley, D.: Predictability of popularity: gaps between prediction and understanding. In: ICWSM 2016, pp. 348–357 (2016)

    Google Scholar 

  26. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    CrossRef  Google Scholar 

  27. Tsagkias, M., Weerkamp, W., De Rijke, M.: Predicting the volume of comments on online news stories. In: CIKM 2009, pp. 1765–1768 (2009)

    Google Scholar 

  28. Wen, M., Yang, D., Rose, C.: Sentiment analysis in MOOC discussion forums: what does it tell us? In: EDM 2014 (2014)

    Google Scholar 

  29. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM 2011, pp. 177–186 (2011)

    Google Scholar 

Download references

Acknowledgments

This paper was partially funded by the Swiss National Science Foundation (SNSF) under the project OpiTrack.

The work of the second author was partially funded by the the Spanish MINECO under the research project SomEMBED (TIN2015-71147-C2-1-P).

This paper is partially supported by the BIGDATAGRAPES project (grant agreement N. 780751) that received funding from the European Union’s Horizon 2020 research and innovation programme under the Information and Communication Technologies programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Giachanou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Giachanou, A., Rosso, P., Mele, I., Crestani, F. (2018). Early Commenting Features for Emotional Reactions Prediction. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds) String Processing and Information Retrieval. SPIRE 2018. Lecture Notes in Computer Science(), vol 11147. Springer, Cham. https://doi.org/10.1007/978-3-030-00479-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00479-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00478-1

  • Online ISBN: 978-3-030-00479-8

  • eBook Packages: Computer ScienceComputer Science (R0)