Alam, F., Celli, F., Stepanov, E.A., Ghosh, A., Riccardi, G.: The social mood of news: self-reported annotations to design automatic mood detection systems. In: PEOPLES 2016, pp. 143–152 (2016)
Google Scholar
Aliannejadi, M., Crestani, F.: Venue suggestion using social-centric scores. CoRR abs/1803.08354 (2018)
Google Scholar
Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: HLT 2005, pp. 579–586 (2005)
Google Scholar
Arapakis, I., Cambazoglu, B.B., Lalmas, M.: On the feasibility of predicting popular news at cold start. J. Assoc. Inf. Sci. Technol. 68(5), 1149–1164 (2017)
CrossRef
Google Scholar
Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: ICWSM 2012, pp. 26–33 (2012)
Google Scholar
Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-probability Series (1984)
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
CrossRef
Google Scholar
Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW 2014, pp. 925–936 (2014)
Google Scholar
Clos, J., Bandhakavi, A., Wiratunga, N., Cabanac, G.: Predicting emotional reaction in social networks. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 527–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5_44
CrossRef
Google Scholar
Gerani, S., Carman, M., Crestani, F.: Aggregation methods for proximity-based opinion retrieval. ACM Trans. Inf. Syst. (TOIS) 30(4), 1–36 (2012)
CrossRef
Google Scholar
Giachanou, A., Crestani, F.: Like it or not: a survey of twitter sentiment analysis methods. ACM Comput. Surv. 49(2), 28:1–28:41 (2016)
CrossRef
Google Scholar
Giachanou, A., Harvey, M., Crestani, F.: Topic-specific stylistic variations for opinion retrieval on Twitter. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 466–478. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30671-1_34
CrossRef
Google Scholar
Giachanou, A., Rosso, P., Mele, I., Crestani, F.: Emotional influence prediction of news posts. In: ICWSM 2018 (2018)
Google Scholar
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical report, Standford (2009)
Google Scholar
Goel, P., Kulshreshtha, D., Jain, P., Shukla, K.K.: Prayas at EmoInt 2017: an ensemble of deep neural architectures for emotion intensity prediction in tweets. In: WASSA 2017, vol. 17, pp. 58–65 (2017)
Google Scholar
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD 2004, pp. 168–177 (2004)
Google Scholar
Kiritchenko, S., Zhu, X., Mohammad, S.M.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50(1), 723–762 (2014)
CrossRef
Google Scholar
Lee, J.G., Moon, S., Salamatian, K.: Modeling and predicting the popularity of online contents with cox proportional hazard regression model. Neurocomputing 76(1), 134–145 (2012)
CrossRef
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS 2013, USA, pp. 3111–3119 (2013)
Google Scholar
Paltoglou, G., Giachanou, A.: Opinion retrieval: searching for opinions in social media. In: Paltoglou, G., Loizides, F., Hansen, P. (eds.) Professional Search in the Modern World. LNCS, vol. 8830, pp. 193–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12511-4_10
CrossRef
Google Scholar
Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
CrossRef
Google Scholar
Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: EmpaTweet: annotating and detecting emotions on Twitter. In: LREC 2012, pp. 3806–3813 (2012)
Google Scholar
Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Google Scholar
Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. SIGKDD Explor. Newsl. 19(1), 22–36 (2017)
CrossRef
Google Scholar
Shulman, B., Sharma, A., Cosley, D.: Predictability of popularity: gaps between prediction and understanding. In: ICWSM 2016, pp. 348–357 (2016)
Google Scholar
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)
CrossRef
Google Scholar
Tsagkias, M., Weerkamp, W., De Rijke, M.: Predicting the volume of comments on online news stories. In: CIKM 2009, pp. 1765–1768 (2009)
Google Scholar
Wen, M., Yang, D., Rose, C.: Sentiment analysis in MOOC discussion forums: what does it tell us? In: EDM 2014 (2014)
Google Scholar
Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM 2011, pp. 177–186 (2011)
Google Scholar