Advertisement

Trusted Execution Path for Protecting Java Applications Against Deserialization of Untrusted Data

  • Stefano Cristalli
  • Edoardo Vignati
  • Danilo Bruschi
  • Andrea Lanzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11050)

Abstract

Deserialization of untrusted data is an issue in many programming languages. In particular, deserialization of untrusted data in Java can lead to Remote Code Execution attacks. Conditions for this type of attack exist, but vulnerabilities are hard to detect. In this paper, we propose a novel sandboxing approach for protecting Java applications based on trusted execution path used for defining the deserialization behavior. We test our defensive mechanism on two main Java Framework JBoss and Jenkins and we show the effectiveness and efficiency of our system. We also discuss the limitations of our current system on newer attacks strategies.

Keywords

Sandbox Anomaly detection Java security Software protection 

References

  1. 1.
    Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks are realistic threats. In: USENIX Security Symposium, vol. 14 (2005)Google Scholar
  2. 2.
    Cristalli, S., Pagnozzi, M., Graziano, M., Lanzi, A., Balzarotti, D.: Micro-virtualization memory tracing to detect and prevent spraying attacks. In: Proceedings of the 25th USENIX Security Symposium (USENIX Security) (2016)Google Scholar
  3. 3.
    Dahse, J., Krein, N., Holz, T.: Code reuse attacks in php: automated pop chain generation. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 42–53. ACM (2014)Google Scholar
  4. 4.
    Fattori, A., Lanzi, A., Balzarotti, D., Kirda, E.: Hypervisor-based malware protection with accessminer. Comput. Secur. 52, 33–50 (2015).  https://doi.org/10.1016/j.cose.2015.03.007CrossRefGoogle Scholar
  5. 5.
    Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack information. In: Proceedings of 2003 Symposium on Security and Privacy, pp. 62–75. IEEE (2003)Google Scholar
  6. 6.
    Frohoff, C.: ysoserial repository (2015). https://github.com/frohoff/ysoserial
  7. 7.
    Gotz Lindenmeier, V.S.: Hotspot internals: Explore and debug the VM at the OS level. In: JavaOne Conference (2013)Google Scholar
  8. 8.
    Karger, P.A.: Limiting the damage potential of discretionary trojan horses. In: 1987 IEEE Symposium on Security and Privacy, p. 32. IEEE (1987)Google Scholar
  9. 9.
    Kim, D., Kwon, B.J., Dumitras, T.: Certified malware: measuring breaches of trust in the windows code-signing PKI. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, vol. 14 (2017)Google Scholar
  10. 10.
    Landman, D., Serebrenik, A., Vinju, J.J.: Challenges for static analysis of java reflection: literature review and empirical study. In: Proceedings of the 39th International Conference on Software Engineering. IEEE Press (2017)Google Scholar
  11. 11.
    Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static analysis. In: USENIX Security Symposium, vol. 14, p. 18 (2005)Google Scholar
  12. 12.
    Mettler, A., Wagner, D., Close, T.: Joe-E: a security-oriented subset of java. In: NDSS, vol. 10, pp. 357–374 (2010)Google Scholar
  13. 13.
    Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Safe active content in sanitized javascript. Google Inc., Technical report (2008)Google Scholar
  14. 14.
    Oracle Corporation: Hotspot runtime overview (2017). http://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html
  15. 15.
  16. 16.
    Oracle Corporation: Java object serialization (2017). https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
  17. 17.
  18. 18.
    Seacord, R.C.: Combating java deserialization vulnerabilities with look-ahead object input streams (laois) (2017)Google Scholar
  19. 19.
    Svoboda, D.: Exploiting java deserialization for fun and profit (2016)Google Scholar
  20. 20.
    Vilanova, L., Ben-Yehuda, M., Navarro, N., Etsion, Y., Valero, M.: Codoms: protecting software with code-centric memory domains. In: ACM SIGARCH Computer Architecture News, vol. 42, pp. 469–480. IEEE Press (2014)Google Scholar
  21. 21.
    Watson, R.N., et al.: Cheri: a hybrid capability-system architecture for scalable software compartmentalization. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 20–37. IEEE (2015)Google Scholar
  22. 22.
    Witchel, E., Rhee, J., Asanović, K.: Mondrix: memory isolation for linux using mondriaan memory protection. In: ACM SIGOPS Operating Systems Review, vol. 39, pp. 31–44. ACM (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of MilanMilanItaly

Personalised recommendations