Advertisement

Computing Betweenness Centrality: An Efficient Privacy-Preserving Approach

  • Varsha Bhat Kukkala
  • S. R. S. Iyengar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11124)

Abstract

Betweenness centrality is a classic network measure used to determine prominent nodes in a network G(VE), where the edges capture a type of flow through the network (like information, material or money). Betweenness being a global centrality measure requires the entire network information to compute the centrality of even a single vertex. We consider the setting where the global network structure is not present centrally with a single individual. Rather, the data is distributed among many individuals, each having only a partial view of the network. Furthermore, confidentiality constraints prevent the individual parties from disclosing their share of the data, thus inhibiting the aggregation of the entire network for analysis. The current paper proposes a secure multiparty protocol to compute the betweenness centrality measure, in a privacy preserving manner, for the considered setting. Employing various optimizations, including oblivious data structures and oblivious RAM, we present a secure variant of the Brandes algorithm for computing betweenness centrality in unweighted networks. The protocol is designed in the semi-honest adversarial model under the two-party setting. We evaluate the performance of the designed protocol by implementing them in the Obliv-C framework for secure computation. We are the first to provide a benchmark for the implementations using the state of the art ORAM schemes and help identify the best schemes for input data of different sizes. Employing the Circuit ORAM and the Square-Root ORAM schemes, we report the complexity of the proposed protocol as \(\mathcal {O}(|V||E|\log ^3|E|)\) and \(\mathcal {O}(|V||E|^{1.5}\log ^{1.5}|E|)\) primitive operations respectively. The asymptotic complexity of Circuit ORAM is found to be the least, with an overhead of only \(\mathcal {O}(\log ^3|E|)\) compared to the traditional non-oblivious Brandes algorithm with complexity \(\mathcal {O}(|V||E|)\).

Keywords

Privacy Social network analysis Secure multiparty computation Betweenness centrality 

References

  1. 1.
    Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 239–257. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_21CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure multiparty computation. J. Cryptol. 30(1), 58–151 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: SIGSAC Conference on Computer & Communications Security, pp. 535–548. ACM (2013)Google Scholar
  4. 4.
    Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: Security and Privacy (SP), pp. 478–492. IEEE (2013)Google Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: ACM symposium on Theory of Computing, pp. 1–10. ACM (1988)Google Scholar
  6. 6.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)Google Scholar
  8. 8.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_15CrossRefGoogle Scholar
  9. 9.
    Doerner, J.: The Absentminded Crypto Kit. https://bitbucket.org/jackdoerner/absentminded-crypto-kit.git
  10. 10.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  11. 11.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRefGoogle Scholar
  12. 12.
    Fridgen, G., Garizy, T.Z.: Supply chain network risk analysis-a privacy preserving approach. In: European Conference on Information Systems (ECIS) (2015)Google Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)Google Scholar
  14. 14.
    Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis, Y.: Secure two-party computation in sublinear (amortized) time. In: ACM Conference on Computer and Communications Security, pp. 513–524. ACM (2012)Google Scholar
  15. 15.
    Kerschbaum, F., Schaad, A.: Privacy-preserving social network analysis for criminal investigations. In: Workshop on Privacy in the Electronic Society, pp. 9–14. ACM (2008)Google Scholar
  16. 16.
    Kim, Y., Choi, T.Y., Yan, T., Dooley, K.: Structural investigation of supply networks: a social network analysis approach. J. Oper. Manag. 29(3), 194–211 (2011)CrossRefGoogle Scholar
  17. 17.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40CrossRefzbMATHGoogle Scholar
  18. 18.
    Krackhardt, D., Hanson, J.R.: 16 informal networks: the company behind the chart. In: Creative Management, p. 202 (2001)Google Scholar
  19. 19.
    Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)Google Scholar
  20. 20.
    Lee, M.-J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.W.: Qube: a quick algorithm for updating betweenness centrality. In: International Conference on World Wide Web, pp. 351–360. ACM (2012)Google Scholar
  21. 21.
    Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
  22. 22.
    Leydesdorff, L.: Betweenness centrality as an Indicator of the Interdisciplinarity of Scientific Journals. J. Am. Soc. Inf. Sci. Technol. 58(9), 1303–1319 (2007)CrossRefGoogle Scholar
  23. 23.
    Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)CrossRefGoogle Scholar
  25. 25.
    Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient private IEEE 754 floating-point computations. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 172–183. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48051-9_13CrossRefGoogle Scholar
  26. 26.
    Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the Goldreich-Ostrovsky lower bound. In: SIGSAC Conference on Computer and Communications Security, pp. 850–861. ACM (2015)Google Scholar
  27. 27.
    Yao, A.C.: Protocols for secure computations. In: Foundations of Computer Science, pp. 160–164. IEEE (1982)Google Scholar
  28. 28.
    Yao, A.C.-C.: How to generate and exchange secrets. In: Foundations of Computer Science, pp. 162–167. IEEE (1986)Google Scholar
  29. 29.
    Zahur, S., Evans, D.: Obliv-C: a language for extensible data-oblivious computation. IACR Cryptology ePrint Archive 2015:1153 (2015)Google Scholar
  30. 30.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_8CrossRefzbMATHGoogle Scholar
  31. 31.
    Zahur, S., Wang, X., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.: Revisiting square-root ORAM: efficient random access in multi-party computation. In: Security and Privacy (SP), pp. 218–234. IEEE (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology RoparRupnagarIndia

Personalised recommendations