Advertisement

Enhanced Security of Attribute-Based Signatures

  • Johannes Blömer
  • Fabian Eidens
  • Jakob Juhnke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11124)

Abstract

Despite the recent advances in attribute-based signatures (ABS), no schemes have yet been considered under a strong privacy definition. We enhance the security of ABS by presenting a strengthened simulation-based privacy definition and the first attribute-based signature functionality in the framework of universal composability (UC). Additionally, we show that the UC definition is equivalent to our strengthened experiment-based security definitions. To achieve this we rely on a general unforgeability and a simulation-based privacy definition that is stronger than standard indistinguishability-based privacy. Further, we show that two extant concrete ABS constructions satisfy this simulation-based privacy definition and are therefore UC secure. The two concrete constructions are the schemes by Sakai et al. (PKC’16) and by Maji et al. (CT-RSA’11). Additionally, we identify the common feature that allows these schemes to meet our privacy definition, giving us further insights into the security requirements of ABS.

Keywords

Attribute-based signatures Privacy Universal composability 

References

  1. 1.
    Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. IJACT 2(3), 229–249 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anada, H., Arita, S., Sakurai, K.: Proof of knowledge on monotone predicates and its application to attribute-based identifications and signatures. IACR ePrint 2016, vol. 483 (2016)Google Scholar
  3. 3.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. IACR ePrint 2005 (2005). http://ia.cr/2005/385
  4. 4.
    Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_30CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable and modular anonymous credentials: definitions and practical constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_11CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal composition with responsive environments. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 807–840. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_27CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  8. 8.
    Canetti, R.: Universally composable signatures, certification and authentication. IACR ePrint 2003 (2003). http://ia.cr/2003/239
  9. 9.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. IACR ePrint 2013 (2013). http://ia.cr/2000/067
  10. 10.
    Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21969-6_14CrossRefzbMATHGoogle Scholar
  11. 11.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herranz, J.: Attribute-based versions of Schnorr and ElGamal. Appl. Algebra Eng. Commun. Comput. 27(1), 17–57 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_25CrossRefGoogle Scholar
  14. 14.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: achieving attribute-privacy and collusion-resistance. IACR ePrint 2008 (2008). http://ia.cr/2008/328
  15. 15.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_24CrossRefGoogle Scholar
  16. 16.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. IEEE Trans. Cloud Comput. 2(4), 409–421 (2014)CrossRefGoogle Scholar
  17. 17.
    Sakai, Y., Attrapadung, N., Hanaoka, G.: Attribute-based signatures for circuits from bilinear map. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 283–300. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations