Advertisement

Steps and Traces

  • Bart Jacobs
  • Paul Levy
  • Jurriaan RotEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11202)

Abstract

In the theory of coalgebras, trace semantics can be defined in various distinct ways, including through algebraic logics, the Kleisli category of a monad or its Eilenberg-Moore category. This paper elaborates two new unifying ideas: (1) coalgebraic trace semantics is naturally presented in terms of corecursive algebras, and (2) all three approaches arise as instances of the same abstract setting. Our perspective puts the different approaches under a common roof, and allows to derive conditions under which some of them coincide.

Notes

Acknowledgement

We are grateful to the anonymous referees for various comments and suggestions.

References

  1. 1.
    Bartels, F.: Generalised coinduction. Math. Struct. Comput. Sci. 13(2), 321–348 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R., Nestmann, U. (eds.) 28th International Conference on Concurrency Theory, CONCUR 2017, LIPIcs. vol. 85, pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)Google Scholar
  3. 3.
    Bonsangue, M.M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 455–469. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31982-5_29 CrossRefzbMATHGoogle Scholar
  4. 4.
    Bonsangue, M., Milius, S., Silva, A.: Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14(1), 7:1–7:52 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inf. Comput. 204(4), 437–468 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Capretta, V., Uustalu, T., Vene, V.: Corecursive algebras: a study of general structured corecursion. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 84–100. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10452-7_7 CrossRefGoogle Scholar
  7. 7.
    Chen, L.-T., Jung, A.: On a categorical framework for coalgebraic modal logic. Electron. Notes Theor. Comput. Sci. 308, 109–128 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cîrstea, C.: A coalgebraic approach to quantitative linear time logics. CoRR, abs/1612.07844 (2016)Google Scholar
  9. 9.
    Eppendahl, A.: Coalgebra-to-algebra morphisms. Electron. Notes Theor. Comput. Sci. 29, 42–49 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science 7. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  11. 11.
    Hasuo, I.: Generic weakest precondition semantics from monads enriched with order. Theor. Comput. Sci. 604, 2–29 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3(4) (2007)Google Scholar
  13. 13.
    Hino, W., Kobayashi, H., Hasuo, I., Jacobs, B.: Healthiness from duality. In: Logic in Computer Science. Computer Science Press, IEEE (2016)Google Scholar
  14. 14.
    Hinze, R., Wu, N., Gibbons, J.: Conjugate hylomorphisms - or: the mother of all structured recursion schemes. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the Symposium on Principles of Programming Languages, POPL 2015, pp. 527–538. ACM (2015)Google Scholar
  15. 15.
    Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions and languages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780274_20 CrossRefzbMATHGoogle Scholar
  16. 16.
    Jacobs, B.: A recipe for state and effect triangles. Log. Methods Comput. Sci. 13(2), (2017). https://lmcs.episciences.org/3660
  17. 17.
    Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput. Syst. Sci. 81(5), 859–879 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kelly, G.M., Street, R.: Review of the elements of 2-categories. In: Kelly, G.M. (ed.) Category Seminar. LNM, vol. 420, pp. 75–103. Springer, Heidelberg (1974).  https://doi.org/10.1007/BFb0063101 CrossRefGoogle Scholar
  19. 19.
    Kerstan, H., König, B., Westerbaan, B.: Lifting adjunctions to coalgebras to (re)discover automata constructions. In: Bonsangue, M.M. (ed.) CMCS 2014 2014. LNCS, vol. 8446, pp. 168–188. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44124-4_10 CrossRefGoogle Scholar
  20. 20.
    Klin, B.: Coalgebraic modal logic beyond sets. In: Fiore, M. (ed.) Mathematical Foundations of Programming Semantics, ENTCS. vol. 173. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  21. 21.
    Klin, B., Rot, J.: Coalgebraic trace semantics via forgetful logics. Log. Methods Comput. Sci. 12(4:10) (2016). https://lmcs.episciences.org/2622
  22. 22.
    Kurz, A., Milius, S., Pattinson, D., Schröder, L.: Simplified coalgebraic trace equivalence. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 75–90. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15545-6_8 CrossRefGoogle Scholar
  23. 23.
    Leinster, T.: Higher Operads, Higher Categories. London Mathematical Society Lecture Notes, vol. 298. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  24. 24.
    Levy, P.: Final coalgebras from corecursive algebras. In: Moss, L., Sobocinski, P. (eds.) Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), LIPIcs. vol. 35, pp. 221–237. Schloss Dagstuhl (2015)Google Scholar
  25. 25.
    Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded monads. In: 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, Nijmegen, The Netherlands, 24–26 June 2015, pp. 253–269 (2015)Google Scholar
  26. 26.
    Milius, S.: Completely iterative algebras and completely iterative monads. Inf. Comput. 196(1), 1–41 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pavlovic, D., Mislove, M., Worrell, J.B.: Testing semantics: connecting processes and process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 308–322. Springer, Heidelberg (2006).  https://doi.org/10.1007/11784180_24 CrossRefzbMATHGoogle Scholar
  28. 28.
    Rot, J.: Coalgebraic minimization of automata by initiality and finality. Electron. Notes Theor. Comput. Sci. 325, 253–276 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Silva, A., Bonchi, F., Bonsangue, M., Rutten, J.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)Google Scholar
  30. 30.
    Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, 29 June–2 July 1997, pp. 280–291. IEEE Computer Society (1997)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Institute for Computing and Information SciencesRadboud UniversiteitNijmegenThe Netherlands
  2. 2.University of BirminghamBirminghamUK

Personalised recommendations