Skip to main content

Intelligent Hearing Instruments—Trends and Challenges

  • Chapter
  • First Online:
The Technology of Binaural Understanding

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Hearing instruments (HIs) aim at helping people with hearing impairment who often have difficulties to understand speech in noisy environments. This chapter provides an overview of the current technological trends and challenges in the field of HI applications. It covers the state-of-the-art of signal-processing algorithms used in modern digital HIs. Focus is given on the extensions of such algorithms for applications, where microphone signals are employed from both the left and right HIs (binaural case). Furthermore, the chapter refers to the challenges for the optimal parametrization and steering of the HI algorithms. The concepts of environment classification for automatically controlling the settings of an HI in different listening situations are discussed and a brief summary of sound-source-localization methods is given. Finally, this chapter discusses the current trends of adding sensors in HIs that can potentially further enhance the hearing performance of the devices and improve the life of hearing-impaired people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldaz, G., M.B. Pedersen, M. Bergmann, S.O. Petersen, R.K. Pedersen, and P. Sommer. 2015. External microphone array and hearing aid using it. In European Patents, EP2840807 A1 (European Patent Office).

    Google Scholar 

  • Anemüller, J., and H. Kayser. 2017. Acoustic source localization by combination of supervised direction-of-arrival estimation with disjoint component analysis. In International Conference on Latent Variable Analysis and Signal Separation, ed. P. Tichavský, M. Babaie-Zadeh, O.J.J. Michel, and N. Thirion-Moreau, 99–108. Berlin: Springer.

    Google Scholar 

  • Appleton, J., and G. König. 2014. Improvement in speech intelligibility and subjective benefit with binaural beamformer technology. Hearing Review, Tech Topic Nov. 14.

    Google Scholar 

  • Bagala, F., C. Becker, A. Cappello, L. Chiari, K. Aminian, J.M. Hausdorff, W. Zijlstra, and J. Klenk. 2012. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLOS ONE 7 (5): e37062.

    ADS  Google Scholar 

  • Bishop, C. 2006. Information Science and Statistics Pattern Recognition and Machine Learning, 1st ed. Berlin: Springer.

    MATH  Google Scholar 

  • Blauert, J., and G.J. Brown. 2020. Reflective and reflexive auditory feedback. In The Technology of Binaural Understanding, eds. J. Blauert, and J. Braasch, 3–31. Cham, Switzerland: Springer and ASA press.

    Google Scholar 

  • Bleichner, M.G., and S. Debener. 2017. Concealed, unobtrusive ear-centered EEG acquisition: cEEGrids for transparent EEG. Frontiers in Human Neuroscience 11: 163.

    Google Scholar 

  • Bodden, M. 1993. Modeling human sound-source localization and the cocktail-party-effect. Acta Acustica united with Acustica 1: 43–55.

    Google Scholar 

  • Boyd, A.W., W.M. Whitmer, W.O. Brimijoin, and M.A. Akeroyd. 2013. Improved estimation of direction of arrival of sound sources for hearing aids using gyroscopic information. Meetings on Acoustics (ICA) 19: 030046.

    Google Scholar 

  • Braun, S., M. Torcoli, D. Marquardt, E.A. Habets, and S. Doclo. 2014. Multichannel dereverberation for hearing aids with interaural coherence preservation. In: 14th International Workshop on Acoustic Signal Enhancement (IWAENC), Juan-les-Pins, France, 124–128.

    Google Scholar 

  • Braun, S., W. Zhou, and E.A.P. Habets. 2015. Narrowband direction-of-arrival estimation for binaural hearing aids using relative transfer functions. In: 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, 1–5.

    Google Scholar 

  • Bregman, A.S. 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge: MIT Press.

    Google Scholar 

  • Britannica. 2017. Deafness. In Encyclopedia Britannica (Encyclopedia Britannica Inc.).

    Google Scholar 

  • Büchler, M., S. Allegro, S. Launer, and N. Dillier. 2005. Sound classification in hearing aids inspired by auditory scene analysis. EURASIP Journal on Advances in Signal Processing 2005 (18): 387845.

    MATH  Google Scholar 

  • Capon, J. 1969. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE 57 (8): 1408–1418.

    Google Scholar 

  • Cornelis, B., M. Moonen, and J. Wouters. 2014. Reduced-bandwidth multi-channel Wiener filter based binaural noise reduction and localization cue preservation in binaural hearing aids. Signal Processing 99: 1–16.

    Google Scholar 

  • Courtois, G. 2016. Spatial hearing rendering in wireless microphone systems for binaural hearing aids. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.

    Google Scholar 

  • Courtois, G., H. Lissek, P. Estoppey, Y. Oesch, and X. Gigandet. 2018. Effects of binaural apatialization in wireless microphone systems for hearing aids on normal-hearing and hearing-impaired listeners. Trends in Hearing 22: 1–17.

    Google Scholar 

  • Courtois, G., P. Marmaroli, H. Lissek, Y. Oesch, and W. Balande. 2014. Implementation of a binaural localization algorithm in hearing aids: Specifications and achievable solutions. In Audio Engineering Society Convention 136, Berlin, Germany.

    Google Scholar 

  • Courtois, G., P. Marmaroli, H. Lissek, Y. Oesch, and W. Balande. 2015a. Binaural hearing aids with wireless microphone systems including speaker localization and spatialization. In Audio Engineering Society Convention 138, Warsaw, Poland.

    Google Scholar 

  • Courtois, G., P. Marmaroli, H. Lissek, Y. Oesch, and W. Balande. 2015b. Development and assessment of a localization algorithm implemented in binaural hearing aids. In 23rd European Signal Processing Conference (EUSIPCO), Nice, France.

    Google Scholar 

  • Courtois, G., P. Marmaroli, H. Lissek, Y. Oesch, and W. Balande. 2016. Hearing assistance systems. In WHO Publications, WO2016116160 A1 (World Health Organization (WHO)).

    Google Scholar 

  • Crandell, C.J., and J.J. Smaldino. 1999. Improving classroom acoustics: Utilizing hearing-assistive technology and communication strategies in the educational setting. Volta Review 101 (5): 47–62.

    Google Scholar 

  • Desloge, J.G., W.M. Rabinowitz, and P.M. Zurek. 1997. Microphone-array hearing aids with binaural output. I. Fixed-processing systems. IEEE Transactions on Speech and Audio Processing 5 (6): 529–542.

    Google Scholar 

  • Dillon, H. 2012. Hearing Aids. New York: Thieme.

    Google Scholar 

  • Doclo, S., S. Gannot, M. Moonen, and A. Spriet. 2010. Acoustic beamforming for hearing aid applications. In Handbook on Array Processing and Sensor Networks, 269–302. Hoboken: Wiley.

    Google Scholar 

  • Doclo, S., T.J. Klasen, T. Van den Bogaert, J. Wouters, and M. Moonen. 2006. Theoretical analysis of binaural cue preservation using multi-channel Wiener filtering and interaural transfer functions. In International Workshop in Acoustic Echo and Noise Control (IWAENC), Xian, China.

    Google Scholar 

  • Doclo, S., and M. Moonen. 2002. GSVD-based optimal filtering for single and multimicrophone speech enhancement. IEEE Transactions on Signal Processing 50 (9): 2230–2244.

    ADS  Google Scholar 

  • Edwards, B. 2007. The future of hearing aid technology. Trends in Amplification 11 (1): 31–46.

    MathSciNet  Google Scholar 

  • Edwards, B. 2016. Method and apparatus for a binaural hearing assistance system using monaural audio signals. In US Patents, US9510111 B2 (US Patent Office).

    Google Scholar 

  • Elko, G.W., and J. Meyer. 2008. Microphone arrays. In Springer Handbook of Speech Processing, Springer Handbooks. Berlin: Springer.

    Google Scholar 

  • Ellis, D., T. Virtanen, M.D. Plumbley, and B. Raj. 2018. Future perspective. In Computational Analysis of Sound Scenes and Events, 401–415. Berlin: Springer International Publishing.

    Google Scholar 

  • Faller, C., and J. Merimaa. 2004. Source localization in complex listening situations: Selection of binaural cues based on interaural coherence. Journal of the Acoustical Society of America 116 (5): 3075–3089.

    ADS  Google Scholar 

  • Farmani, M., M.S. Pedersen, Z.H. Tan, and J. Jensen. 2015. Maximum likelihood approach to “informed” sound source localization for hearing aid applications. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, 16–20.

    Google Scholar 

  • Favre-Félix, A., C. Graversen, T. Dau, and T. Lunner. 2017. Real-time estimation of eye gaze by in-ear electrodes. In International Engineering in Medicine and Biology Conference (EMBC), Jeju Island, Korea, 4086–4089.

    Google Scholar 

  • Favre-Félix, A., R. Hietkamp, C. Graversen, T. Dau, and T. Lunner. 2018. Steering of audio input in hearing aids by eye gaze through electrooculogram. In ARO Midwinter Meeting, San Diego, California.

    Google Scholar 

  • Froehlich, M., K. Freels, and T.A. Powers. 2015. Speech recognition benefit obtained from binaural beamforming hearing aids: Comparison to omnidirectional and individuals with normal hearing. Audiology Online 14338: 1–8.

    Google Scholar 

  • Frost, O.L. 1972. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE 60 (8): 926–935.

    Google Scholar 

  • Fuglsang, S.A., T. Dau, and J. Hjortkjær. 2017. Noise-robust cortical tracking of attended speech in real-world acoustic scenes. Neuroimage 156: 435–444.

    Google Scholar 

  • Geetha, C., K. Tanniru, and R.R. Rajan. 2017. Efficacy of directional microphones in hearing aids equipped with wireless synchronization technology. The Journal of International Advanced Otology 13 (1): 113–117.

    Google Scholar 

  • Gran, K.-F.J., and J. Udesen. 2017. Method of superimposing spatial auditory cues on externally picked-up microphone signals. In US Patents, US9699574 B2 (US Patent Office).

    Google Scholar 

  • Griffiths, L., and C.W. Jim. 1982. An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation 30 (1): 27–34.

    ADS  Google Scholar 

  • Hadad, E., S. Doclo, and S. Gannot. 2016. The binaural LCMV beamformer and its performance analysis. IEEE Transactions on Audio, Speech and Language Processing 24 (3): 543–558.

    Google Scholar 

  • Hadad, E., S. Gannot, and S. Doclo. 2012. Binaural linearly constrained minimum variance beamformer for hearing aid applications. In 13th International Workshop on Acoustic Signal Enhancement (IWAENC), Aachen, Germany, 1–4.

    Google Scholar 

  • Hadar, U., T.J. Steiner, and F. Clifford Rose. 1985. Head movement during listening turns in conversation. Journal of Nonverbal Behavior 9 (4): 214–228.

    Google Scholar 

  • Hamacher, V., J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass. 2005. Signal processing in high-end hearing aids: State of the art, challenges, and future trends. EURASIP Journal on Advances in Signal Processing 2005: 2915–2929.

    MATH  Google Scholar 

  • Hamacher V., E. Fischer, U. Kornagel, and H. Puder. 2006. Applications of adaptive signal processing methods in high-end hearing aids. In Topics Acoustic Echo and Noise Control, 599–636. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Hassager, H.G., T. May, A. Wiinberg, and T. Dau. 2017a. Preserving spatial perception in rooms using direct-sound driven dynamic range compression. Journal of the Acoustical Society of America 141 (6): 4556–4566.

    ADS  Google Scholar 

  • Hassager, H.G., A. Wiinberg, and T. Dau. 2017b. Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment. Journal of the Acoustical Society of America 141 (4): 2556–2568.

    ADS  Google Scholar 

  • Hawkins, D.B. 1984. Comparisons of speech recognition in noise by mildly-to-moderately hearing-impaired children using hearing aids and FM systems. The Journal of Speech and Hearing Disorders 49 (4): 409–418.

    Google Scholar 

  • He, D.D., E.S. Winokur, and C.G. Sodini. 2012. An ear-worn continuous ballistocardiogram (BCG) sensor for cardiovascular monitoring. In International Engineering in Medicine and Biology Conference (EMBC), San Diego, USA, vol. 2012, 5030–5033.

    Google Scholar 

  • Hiruma, N., H. Nakashima, and Y.-I. Fujisaka. 2016. Low delay wind noise cancellation for binaural hearing aids. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Hamburg, Germany, vol. 253, 4844–4854.

    Google Scholar 

  • Holube, I., H. Pudder, and T. Velde. 2014. DSP hearing instruments. In Sandlin’s Textbook of Hearing Aid Implication - Technical and Clinical Considerations, 221–293. San Diego, CA: Plural Publishing.

    Google Scholar 

  • Ibrahim, I., V. Parsa, E. Macpherson, and M. Cheesman. 2013. Evaluation of speech intelligibility and sound localization abilities with hearing aids using binaural wireless technology. Audiology Research 3 (1): 1–21.

    Google Scholar 

  • Kates, J.M. 1995. Classification of background noises for hearing aid applications. Journal of the Acoustical Society of America 97 (1): 461–470.

    ADS  Google Scholar 

  • Kates, J.M. 2008. Digital Hearing Aids. San Diego: Plural Publishing.

    Google Scholar 

  • Keidser, G., A. O’Brien, J.-U. Hain, M. McLelland, and I. Yeend. 2009. The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users. International Journal of Audiology 48 (11): 789–803.

    Google Scholar 

  • Keidser, G., K. Rohrseitz, H. Dillon, V. Hamacher, L. Carter, U. Rass, and E. Convery. 2006. The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers. International Journal of Audiology 45 (10): 563–579.

    Google Scholar 

  • Killion, M., A. van Halteren, S. Stenfelt, and D. Warren. 2016. Hearing aid transducers. In Hearing Aids, 59–92. Berlin: Springer.

    Google Scholar 

  • Killion, M.C. 1979. AGC circuit particularly for a hearing aid. In US Patents, US4170720 A (US Patent Office).

    Google Scholar 

  • Klasen, T.J., M. Moonen, T. Van den Bogaert, and J. Wouters. 2005. Preservation of interaural time delay for binaural hearing aids through multi-channel Wiener filtering based noise reduction. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, vol. 3, iii–29.

    Google Scholar 

  • Klasen, T.J., T. Van den Bogaert, M. Moonen, and J. Wouters. 2007. Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues. IEEE Transactions on Signal Processing 55 (4): 1579–1585.

    ADS  MathSciNet  MATH  Google Scholar 

  • Kollmeier, B., and R. Koch. 1994. Speech enhancement based on physiological and psychoacoustical models of modulation perception and binaural interaction. Journal of the Acoustical Society of America 95 (3): 1593–1602.

    ADS  Google Scholar 

  • Kollmeier, B., J. Peissig, and V. Hohmann. 1993. Binaural noise-reduction hearing aid scheme with real-time processing in the frequency domain. Scandinavian Audiology Supplementum 38: 28–38.

    Google Scholar 

  • Korhonen, P., C. Lau, F. Kuk, D. Keenan, and J. Schumacher. 2015. Effects of coordinated compression and pinna compensation features on horizontal localization performance in hearing aid users. Journal of the American Academy of Audiology 26 (1): 80–92.

    Google Scholar 

  • Latzel, M. 2013. Concepts for binaural processing in hearing aids. Hearing Review, Hearing Instruments, March 2013. http://www.hearingreview.com/2013/03/concepts-for-binaural-processing-in-hearing-aids/. (last accessed December 20, 2019).

  • Launer, S., J.A. Zakis, and B.C. Moore. 2016. Hearing aid signal processing. In Hearing Aids, 93–130. Berlin: Springer.

    Google Scholar 

  • Lewis, M.S., C.C. Crandell, M. Valente, and J.E. Horn. 2004. Speech perception in noise: Directional microphones versus frequency modulation (FM) systems. Journal of the American Academy of Audiology 15 (6): 426–439.

    Google Scholar 

  • Liao, W.-C., M. Hong, I. Merks, T. Zhang, and Z.-Q. Luo. 2015a. Incorporating spatial information in binaural beamforming for noise suppression in hearing aids. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, 5733–5737.

    Google Scholar 

  • Liao, W.-C., Z.-Q. Luo, I. Merks, and T. Zhang. 2015b. An effective low complexity binaural beamforming algorithm for hearing aids. In Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, 1–5.

    Google Scholar 

  • Looney, D., V. Goverdovsky, I. Rosenzweig, M.J. Morrell, and D.P. Mandic. 2016. Wearable in-ear encephalography sensor for monitoring sleep. Preliminary observations from nap studies. Annals of the American Thoracic Society 13 (12): 2229–2233.

    Google Scholar 

  • Looney, D., P. Kidmose, and D.P. Mandic. 2014. Ear-EEG: User-centered and wearable bci. In Brain-Computer Interface Research: A State-of-the-Art Summary -2, 41–50. Berlin: Springer.

    Google Scholar 

  • Lorenz, F., W. Malte, G. Carina, B. Alex, L. Thomas, and O. Jonas. 2017. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech. Journal of Neural Engineering 14 (3): 036020.

    Google Scholar 

  • Ma, N., T. May, and G.J. Brown. 2017. Exploiting Deep Neural networks and head movements for robust binaural localization of multiple sources in reverberant environments. IEEE Transactions on Acoustics Speech and Signal Processing 25 (12): 2444–2453.

    Google Scholar 

  • Mandic, P.K., M.L. Rank, M. Ungstrup, D. Looney, C. Park, and P., D. 2010. A yarbus-style experiment to determine auditory attention. In International Engineering in Medicine and Biology Conference (EMBC), Buenos Aires, Argentina, 4650–4653.

    Google Scholar 

  • Marquardt, D., E. Hadad, S. Gannot, and S. Doclo. 2014. Optimal binaural LCMV beamformers for combined noise reduction and binaural cue preservation. In 14th International Workshop on Acoustic Signal Enhancement (IWAENC), Juan-les-Pins, France, 288–292.

    Google Scholar 

  • Marquardt, D., V. Hohmann, and S. Doclo. 2013. Coherence preservation in multi-channel Wiener filtering based noise reduction for binaural hearing aids. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 8648–8652.

    Google Scholar 

  • Marquardt, D., V. Hohmann, and S. Doclo. 2015. Interaural coherence preservation in multi-channel Wiener filtering-based noise reduction for binaural hearing aids. IEEE Transactions on Audio, Speech and Language Processing 23 (12): 2162–2176.

    Google Scholar 

  • May, T. 2018. Robust speech dereverberation with a neural network-based post-filter that exploits multi-conditional training of binaural cues. IEEE Transactions on Audio, Speech and Language Processing 26 (2): 406–414.

    Google Scholar 

  • May, T., S. van de Par, and A. Kohlrausch. 2013. Binaural localization and detection of speakers in complex acoustic scenes. In The Technology of Binaural Listening, ed. Jens Blauert, 397–425. Springer and ASA Press.

    Google Scholar 

  • May, Tobias , Borys Kowalewski, and Torsten Dau. 2020. Scene-aware dynamic range compression in hearing aids. In: The Technology of Binaural Understanding, eds. J. Blauert and J. Braasch, 763–799. Cham, Switzerland: Springer and ASA press.

    Google Scholar 

  • Merks, I., G. Enzner, and T. Zhang. 2013. Sound source localization with binaural hearing aids using adaptive blind channel identification. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 438–442.

    Google Scholar 

  • Mesgarani, N., and E.F. Chang. 2012. Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485 (7397): 233–236.

    ADS  Google Scholar 

  • Mollick, E. 2006. Establishing Moore’s law. IEEE Annals of the History of Computing 28 (3): 62–75.

    MathSciNet  Google Scholar 

  • Moore, B.C. 2007a. Binaural sharing of audio signals: Prospective benefits and limitations. The Hearing Journal 60 (11): 46–48.

    Google Scholar 

  • Moore, B.C. 2007b. Hearing aids. In Cochlear Hearing Loss: Physiological, Psychological and Technical Issues. Hoboken: Wiley.

    Google Scholar 

  • Moradi, S., B. Lidestam, H. Danielsson, E.H.N. Ng, and J. Rönnberg. 2017. Visual cues contribute differentially to audiovisual perception of consonants and vowels in improving recognition and reducing cognitive demands in listeners with hearing impairment using hearing aids. Journal of Speech, Language, and Hearing Research 60 (9): 2687–2703.

    Google Scholar 

  • Neher, T., K.C. Wagener, and R.-L. Fischer. 2016. Directional processing and noise reduction in hearing aids: Individual and situational influences on preferred setting. Journal of the Acoustical Society of America 27 (8): 628–646.

    Google Scholar 

  • Neher, T., K.C. Wagener, and M. Latzel. 2017. Speech reception with different bilateral directional processing schemes: Influence of binaural hearing, audiometric asymmetry, and acoustic scenario. Hearing Research 353: 36–48.

    Google Scholar 

  • Nishimura, R., Y. Suzuki, and F. Asano. 2002. A new adaptive binaural microphone array system using a weighted least squares algorithm. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Orlando, Florida, USA, vol. 2, II–1925.

    Google Scholar 

  • Nordqvist, P., and A. Leijon. 2004. An efficient robust sound classification algorithm for hearing aids. Journal of the Acoustical Society of America 115 (6): 3033–3041.

    ADS  Google Scholar 

  • Picou, E.M., E. Aspell, and T.A. Ricketts. 2014. Potential benefits and limitations of three types of directional processing in hearing aids. Ear and Hearing 35 (3): 339–352.

    Google Scholar 

  • Pontoppidan, N.H. 2017. Binaural hearing assistance system comprising a database of head related transfer functions. In US Patents, US9565502 B2 (US Patent Office).

    Google Scholar 

  • Popelka, G.R., and B.C.J. Moore. 2016. Future directions for hearing aid development. In Hearing Aids, 323–333. Berlin: Springer.

    Google Scholar 

  • Recker, K.L., and E.A. Durant. 2017. Method and apparatus for localization of streaming sources in hearing assistance system. In US Patents, US9584933 B2 (US Patent Office).

    Google Scholar 

  • Ricketts, T.A., E.M. Picou, and J. Galster. 2017. Directional microphone hearing aids in school environments: Working toward optimization. Journal of Speech, Language, and Hearing Research 60 (1): 263–275.

    Google Scholar 

  • Rodriguez-Villegas, A.J.C., D.C. Yates, S.J.M. Smith, and J.S. Duncan. 2010. Wearable electroencephalography. IEEE Engineering in Medicine and Biology Magazine 29 (3): 44–56.

    Google Scholar 

  • Schafer, E.C., L. Mathews, S. Mehta, M. Hill, A. Munoz, R. Bishop, and M. Moloney. 2013. Personal FM systems for children with autism spectrum disorders (ASD) and/or attention-deficit hyperactivity disorder (ADHD): An initial investigation. Journal of Communication Disorders 46 (1): 30–52.

    Google Scholar 

  • Schwartz, A.H., and B.G. Shinn-Cunningham. 2013. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners. Journal of the Acoustical Society of America 133 (4): 2329–2339.

    ADS  Google Scholar 

  • Schwartz, B., S. Gannot, and E.A. Habets. 2015. An online dereverberation algorithm for hearing aids with binaural cues preservation. In Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, 1–5.

    Google Scholar 

  • Shinn-Cunningham, B.G., and V. Best. 2008. Selective attention in normal and impaired hearing. Trends in Amplification 12 (4): 283–299.

    Google Scholar 

  • Smith, P., A. Davis, J. Day, S. Unwin, G. Day, and J. Chalupper. 2008. Real-world preferences for linked bilateral processing. Hearing Journal 61 (7): 33–34.

    Google Scholar 

  • Sockalingam, R., M. Holmberg, K. Eneroth, and M. Shulte. 2009. Binaural hearing aid communication shown to improve sound quality and localization. Hearing Journal 62 (10): 46–47.

    Google Scholar 

  • Soede, W., A.J. Berkhout, and F.A. Bilsen. 1993. Development of a directional hearing instrument based on array technology. Journal of the Acoustical Society of America 94 (2): 785–798.

    ADS  Google Scholar 

  • Souza, P. 2016. Speech perception and hearing aids. In Hearing Aids, 151–180. Berlin: Springer.

    Google Scholar 

  • Srinivasan, S., A. Pandharipande, and K. Janse. 2008. Beamforming under quantization errors in wireless binaural hearing aids. Journal on Audio, Speech, and Music Processing 2008 (1).

    Google Scholar 

  • Staab, W. 2013. Wireless systems for hearing aids. Hearing Health & Technology Matters. http://hearinghealthmatters.org/waynesworld/2013/2566/. (last accessed Decemebr 18, 2019).

  • Stadler, R.W., and W.M. Rabinowitz. 1993. On the potential of fixed arrays for hearing aids. Journal of the Acoustical Society of America 94 (3): 1332–1342.

    Google Scholar 

  • Szurley, J., A. Bertrand, B. Van Dijk, and M. Moonen. 2016. Binaural noise cue preservation in a binaural noise reduction system with a remote microphone signal. IEEE Transactions on Audio, Speech and Language Processing 24 (5): 952–966.

    Google Scholar 

  • Tessendorf, B., A. Bulling, D. Roggen, T. Stiefmeier, M. Feilner, P. Derleth, and G. Tröster. 2011a. Recognition of hearing needs from body and eye movements to improve hearing instruments. In International Conference on Pervasive Computing, San Francisco, USA, 314–331.

    Google Scholar 

  • Tessendorf, B., A. Kettner, D. Roggen, T. Stiefmeier, G. Tröster, P. Derleth, and M. Feilner. 2011b. Identification of relevant multimodal cues to enhance context-aware hearing instruments. In International Conference on Body Area Networks, Beijing, China, 15–18.

    Google Scholar 

  • Tessendorf, B., M. Debevc, P. Derleth, M. Feilner, F. Gravenhorst, D. Roggen, T. Stiefmeier, and G. Tröster. 2013. Design of a multimodal hearing system. Computer Science and Information Systems 10 (1).

    Google Scholar 

  • Thammasat, E., and J. Chaicharn. 2012. A simply fall-detection algorithm using accelerometers on a smartphone. In Biomedical Engineering International Conference, Penang, Malaysia, 1/4.

    Google Scholar 

  • Thibodeau, L. 2010. Benefits of adaptive FM systems on speech recognition in noise for listeners who use hearing aids. American Journal of Audiology 19 (1): 36–45.

    Google Scholar 

  • Thibodeau, L. 2014. Comparison of speech recognition with adaptive digital and FM remote microphone hearing assistance technology by listeners who use hearing aids. American Journal of Audiology 23 (2): 201–210.

    Google Scholar 

  • Thiemann, J., M. Müller, D. Marquardt, S. Doclo, and S. van de Par. 2016. Speech enhancement for multimicrophone binaural hearing aids aiming to preserve the spatial auditory scene. EURASIP Journal on Advances in Signal Processing 2016 (1): 12.

    Google Scholar 

  • Timmer, B. 2013. Is it sync or stream? The differences between wireless hearing aid features. The Hearing Review 20 (6): 20–22.

    MathSciNet  Google Scholar 

  • Tsilfidis, A., A. Westermann, J.M. Buchholz, E. Georganti, and J. Mourjopoulos. 2013. Binaural Dereverberation, 359–396. Berlin: Springer.

    Google Scholar 

  • Van den Bogaert, T., E. Carette, and J. Wouters. 2011. Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna. International Journal of Audiology 50 (3): 164–176.

    Google Scholar 

  • Varghese, L.A., E.J. Ozmeral, V. Best, and B.G. Shinn-Cunningham. 2012. How visual cues for when to listen aid selective auditory attention. Journal of the Association for Research in Otolaryngology 13 (3): 359–368.

    Google Scholar 

  • Vroegop, J.L., J.G. Dingemanse, N.C. Homans, and A. Goedegebure. 2017. Evaluation of a wireless remote microphone in bimodal cochlear implant recipients. International Journal of Audiology 56 (9): 643–649.

    Google Scholar 

  • Wang, D., and G.J. Brown. 2007. Computational Auditory Scene Analysis: Principles, Algorithms and Applications. New York: IEEE Press/Wiley-Interscience.

    Google Scholar 

  • Welker, D.P., J.E. Greenberg, J.G. Desloge, and P.M. Zurek. 1997. Microphone-array hearing aids with binaural output. II. A two-microphone adaptive system. IEEE Transactions on Speech and Audio Processing 5 (6): 543–551.

    Google Scholar 

  • Westermann, A., J.M. Buchholz, and T. Dau. 2013. Binaural dereverberation based on interaural coherence histograms. Journal of the Acoustical Society of America 133 (5): 2767–2777.

    ADS  Google Scholar 

  • WHO. 2017. Deafness and hearing loss. http://www.who.int/mediacentre/factsheets/fs300/en/. (last accessed December 13, 2019).

  • Widrow, B., J.R. Glover, J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, J.E. Dong, and R.C. Goodlin. 1975. Adaptive noise cancelling: Principles and applications. Proceedings of the IEEE 63 (12): 1692–1716.

    Google Scholar 

  • Widrow, B., and F.-L. Luo. 2003. Microphone arrays for hearing aids: An overview. Speech Communication 39 (1): 139–146.

    MATH  Google Scholar 

  • Wiggins, I.M., and B.U. Seeber. 2012. Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners. Ear and Hearing 33 (3): 399–410.

    Google Scholar 

  • Wilson, K., and T. Darrell. 2005. Improving audio source localization by learning the precedence effect. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Philadelphia, Pennsylvania, USA, vol. 4, iv/1125–iv/1128.

    Google Scholar 

  • Wittkop, T., V. Hohmann, and B. Kollmeier. 1996. Noise reduction strategies in digital binaural hearing aids. In International Symposium on Psychoacoustics, Speech and Hearing Aids, 245–251.

    Google Scholar 

  • Wolfe, J., M. Morais, E. Schafer, S. Agrawal, and D. Koch. 2015. Evaluation of speech recognition of cochlear implant recipients using adaptive, digital remote microphone technology and a speech enhancement sound processing algorithm. Journal of the American Academy of Audiology 26 (5): 502–508.

    Google Scholar 

  • Wu, F., H. Zhao, Y. Zhao, and H. Zhong. 2015. Development of a wearable-sensor-based fall detection system. International Journal of Telemedicine and Applications 2015: 2.

    Google Scholar 

  • Wu, Y.H., and R.A. Bentler. 2010. Impact of visual cues on directional benefit and preference: Part i. Laboratory tests. Ear and Hearing 31 (1): 22–34.

    Google Scholar 

  • Yang, C.-Y., W.-S. Chou, K.-C. Chang, C.-W. Liu, T.-S. Chi, and S.-L. Jou. 2013. Spatial-cue-based multi-band binaural noise reduction for hearing aids. In Workshop on Signal Processing Systems (SiPS), Taipei City, Taiwan, 278–283.

    Google Scholar 

  • Yang, L.A., O. Aziz, B. Lo, and Z., G. 2009. Detecting walking gait impairment with an ear-worn sensor. In International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, California, USA, 175–180.

    Google Scholar 

  • Yee, D., H. Kamkar-Parsi, R. Martin, and H. Puder. 2017. A noise reduction post-filter for binaurally-linked single-microphone hearing aids utilizing a nearby external microphone. IEEE Transactions on Acoustics Speech and Signal Processing 26 (1): 5–18.

    Google Scholar 

  • Yousefian, N., P.C. Loizou, and J.H. Hansen. 2014. A coherence-based noise reduction algorithm for binaural hearing aids. Speech Communication 58: 101–110.

    Google Scholar 

  • Zohourian, M., and R. Martin. 2016. Binaural speaker localization and separation based on a joint ILD/ITD model and head movement tracking. In International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 430–434.

    Google Scholar 

Download references

Acknowledgements

The authors thank T. May and B. Kowalewski for their helpful comments. They further thank two anonymous reviewers for very constructive advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Georganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Georganti, E., Courtois, G., Derleth, P., Launer, S. (2020). Intelligent Hearing Instruments—Trends and Challenges. In: Blauert, J., Braasch, J. (eds) The Technology of Binaural Understanding. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00386-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00386-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00385-2

  • Online ISBN: 978-3-030-00386-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics