Skip to main content

The Language of Rooms: From Perception to Cognition to Aesthetic Judgment

Part of the Modern Acoustics and Signal Processing book series (MASP)

Abstract

Rooms are not perceptual objects themselves; they can only be perceived through their effect on the presented signal, the sound source, and the human receiver. An overview of different approaches to identify the qualities and the dimensions of “room acoustical impression” will be provided, that have resulted in psychological measuring instruments for room acoustical evaluation from the audience perspective. It will be outlined how the psychoacoustic aspects of room acoustical perception are embedded in a socio-cultural practice that leads to an aesthetic judgment on the quality of performance venues for music and speech.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00386-9_15
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00386-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bagenal, H. 1925. Designing for musical tone. Journal of the Royal Institute of British Architects 32 (20): 625–629.

    Google Scholar 

  • Barron, M. 1971. The subjective effects of first reflections in concert halls–the need for lateral reflections. Journal of Sound and Vibration 15 (4): 475–494.

    ADS  Google Scholar 

  • Barron, M., and A.H. Marshall. 1981. Spatial impression due to early lateral reflections in concert halls: the derivation of a physical measure. Journal of Sound and Vibration 77 (2): 211–232.

    ADS  Google Scholar 

  • Beranek, L.L. 1962. Music, Acoustics & Architecture. New York: Wiley.

    Google Scholar 

  • Berg, J., and F. Rumsey. 2006. Identification of quality attributes of spatial audio by repertory grid technique. Journal of the Audio Engineering Society 54 (5): 365–379.

    Google Scholar 

  • Blauert, J. 2013. Conceptual aspects regarding the qualification of spaces for aural performances. Acta Acustica united with Acustica 99 (1): 1–13.

    Google Scholar 

  • Bradley, J.S., and G.A. Soulodre. 1995. Objective measures of listener envelopment. Journal of the Audio Engineering Society 98 (5): 2590–2597.

    Google Scholar 

  • Bureau of Standards. 1926. Circular of the Bureau of Standards, No. 300. Architectural acoustics. Washington: G.P.O. https://archive.org/details/circularofbureau300unse, https://archive.org/details/circularofbureau300unse.

  • Cronbach, L.J. 1947. Test ‘reliability’: Its meaning and determination. Psychometrika 12 (1): 1–16. https://doi.org/10.1007/BF02289289.

  • Dabrowska, E., and D. Divjak. Handbook of Cognitive Linguistics. Berlin, Boston: De Gruyter Mouton.

    Google Scholar 

  • Dancygier, B. 2017. The Cambridge Handbook of Cognitive Linguistics. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • de Vries, D., E.M. Hulsebos, and J. Baan. 2001. Spatial fluctuations in measures for spaciousness. Journal of the Acoustical Society of America 110 (2): 947–954.

    ADS  Google Scholar 

  • Evans, V., and M. Green. 2007. Cognitive Linguistics. An Introduction. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Everett, C. 2013. Linguistic Relativity: Evidence Across Languages and Cognitive Domains, vol. 25. Berlin/New York: De Gruyter Mouton.

    Google Scholar 

  • Fabrigar, L.R., D.T. Wegener, R.C. MacCallum, and E.J. Strahan. 1999. Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods 4 (3): 272–299.

    Google Scholar 

  • Fornell, C., and D.F. Larcker. 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18 (1): 39–50. https://doi.org/10.1177/002224378101800104.

  • Harring, J.R., B.A. Weiss, and J.C. Hsu. 2012. A comparison of methods for estimating quadratic effects in nonlinear structural equation models. Psychological Methods 17 (2): 193–214. https://doi.org/10.1037/a0027539.

  • Hawkes, R.J., and H. Douglas. 1971. Subjective acoustic experience in concert auditoria. Acustica 24 (5): 235–250.

    Google Scholar 

  • Johnson-Laird, P.N. 1983. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge: Harvard University Press.

    Google Scholar 

  • Juslin, P.N., L.S. Sakka, G.T. Barradas, and S. Liljeström. 2016. No accounting for taste?: Idiographic models of aesthetic judgment in music. Psychology of Aesthetics, Creativity, and the Arts 10 (2): 157–170.

    Google Scholar 

  • Kahle, E. 1995. Validation d’un modèle objectif de la perception de la qualité acoustique dans un ensemble de salles de concerts et d’opéras (Validation of a perceptual model of the acoustic quality in an ensemble of concert halls and opera houses). Le Mans: Le Mans Universite. Ph.D. thesis.

    Google Scholar 

  • Knudsen, V.O. 1931. Acoustics of music rooms. Journal of the Acoustical Society of America 2: 434–467.

    ADS  Google Scholar 

  • Kuusinen, A., and T. Lokki. 2017. Wheel of concert hall acoustics. Acta Acustica united with Acustica 103 (2): 185–188.

    Google Scholar 

  • Lehmann, P., and H. Wilkens. 1980. Zusammenhang subjektiver Beurteilungen von Konzertsälen mit raumakustischen Kriterien (Relation between subjective elaluations of concert halls and room-acoustical criteria). Acustica 45: 256–268.

    Google Scholar 

  • Levinson, S.C. Space in Language and Cognition: Explorations in Cognitive Diversity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Loehlin, J.C. 2004. Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis. Mahwah: Routledge.

    MATH  Google Scholar 

  • Lokki, T., J. Pätynen, A. Kuusinen, and S. Tervo. 2012. Disentangling preference ratings of concert hall acoustics using subjective sensory profiles. Journal of the Acoustical Society of America 132 (5): 3148–3161.

    ADS  Google Scholar 

  • Lokki, T., J. Pätynen, A. Kuusinen, H. Vertanenen, and S. Tervo. 2011. Concert hall acoustics assessment with individually elicited attributes. Journal of the Acoustical Society of America 130 (2): 835–849.

    ADS  Google Scholar 

  • Luizard, P., J. Steffens, and S. Weinzierl. 2020. Singing in different rooms: Common or individual adaptation patterns to the acoustic conditions? Journal of the Acoustical Society of America. 147 (2): EL132–EL137.

    Google Scholar 

  • MacCallum, R.C., K.F. Widaman, S. Zhang, and S. Hong. 1999. Sample size in factor analysis. Psychological Methods 4 (1): 84–99.

    Google Scholar 

  • Merimaa, J., and V. Pulkki. 2005. Spatial impulse response rendering I: Analysis and synthesis. Journal of the Audio Engineering Society 53: 1115–1127.

    Google Scholar 

  • Millsap, R.E. 2011. Statistical Approaches to Measurement Invariance. New York: Routledge.

    Google Scholar 

  • Minsky, M. 1977. Frame-system theory. In Thinking. Readings in Cognitive Science, ed. P.N. Johnson-Laird and P.C. Wason. Cambridge: Cambridge University Press.

    Google Scholar 

  • Murphy, G. 2004. The Big Book of Concepts. MIT Press.

    Google Scholar 

  • Noble, A.C., R.A. Arnold, J. Buechsenstein, E.J. Leach, J.O. Schmidt, and P.M. Stern. 1987. Modification of a standardized system of wine aroma terminology. American Journal of Enology and Viticulture 38 (2): 143–146.

    Google Scholar 

  • Osgood, C.E., G.J. Suci, and P.H. Tannenbaum. 1957. The Measurement of Meaning. Urbana, Ill.: University of Illinois Press.

    Google Scholar 

  • Pedersen, T.H., and N. Zacharov. 2015. The development of a sound wheel for reproduced sound. Audio Engineering Society Convention. 138 Preprint No. 9310.

    Google Scholar 

  • Pulkki, V. 2007. Spatial sound reproduction with directional audio coding. Journal of the Audio Engineering Society 55: 503–516.

    Google Scholar 

  • Sabine, P.E. 1928. The acoustics of sound recording rooms. Transactions of the Society of Motion Picture Engineers 12 (35): 809–822.

    Google Scholar 

  • Sabine, W.C. 1900. Reverberation. The American Architect and Building News. 68: 3–5, 19–22, 35–37, 43–45, 59–61, 75–76, 83–84.

    Google Scholar 

  • Sabine, W.C. 1906. The accuracy of musical taste in regard to architectural acoustics. Proceedings of the American Academy of Arts and Sciences 42 (2): 53–58.

    Google Scholar 

  • Schärer Kalkandjiev, Z., and S. Weinzierl. 2013. The influence of room acoustics on solo music performance: An empirical case study. Acta Acustica united with Acustica 99: 433–441.

    Google Scholar 

  • Schärer Kalkandjiev, Z., and S. Weinzierl. 2015. The influence of room acoustics on solo music performance: An experimental study, Psychomusicology: Music. Mind and Brain 25 (3): 195–207.

    Google Scholar 

  • Schmidt, F.L., and J.E. Hunter. 1999. Theory testing and measurement error. Intelligence 27 (3): 183–198. https://doi.org/10.1016/S0160-2896(99)00024-0.

  • Somerville, T. 1953. Subjective comparisons of concert halls. BBC Quarterly 8: 125–128.

    Google Scholar 

  • Somerville, T., and C.L.S. Gilford. 1957. Acoustics of large orchestral studios and concert halls. Proceedings of the IEE 104: 85–97.

    Google Scholar 

  • Sotiropoulou, A.G., R.J. Hawkes, and D.B. Fleming. 1995. Concert hall acoustic evaluations by ordinary concert-goers: I, Multi-dimensional description of evaluations. Acta Acustica united with Acustica 81 (1): 1–9.

    Google Scholar 

  • Soulodre, G.A., and J.S. Bradley. 1995. Subjective evaluation of new room acoustic measures. Journal of the Audio Engineering Society 98 (1): 294–301.

    Google Scholar 

  • Spearman, C., and L.W. Jones. 1950. Human Ability. London: Macmillan.

    Google Scholar 

  • Susini, P., G. Lemaitre, and S. McAdams. 2011. Psychological Measurement for Sound Description and Evaluation in Measurement with Persons: Theory, Methods, and Implementation Areas, eds. B. Berglund and G. B. Rossi. New York: Psychology Press.

    Google Scholar 

  • Thiering, M. 2018. Kognitive Semantik und Kognitive Anthropologie: Eine Einführung [Cognitive semantics and cognitive anthropology: An introduction]. Berlin: De Gruyter.

    Google Scholar 

  • Tkaczyk, V., and S. Weinzierl. 2019. Architectural acoustics and the trained ear in the arts: A journey from 1780 to 1830. In The Oxford Handbook of Music Listening in the 19th and 20th Centuries, eds. C. Thorau and H. Ziemer. New York, NY: Oxford University Press.

    Google Scholar 

  • Torgerson, W.S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17 (4): 401–419.

    MathSciNet  MATH  Google Scholar 

  • Traer, J., and J.H. McDermott. 2016. Statistics of natural reverberation enable perceptual separation of sound and space. Proceedings of the National Academy of Sciences 113 (48): E7856–E7865.

    Google Scholar 

  • Vooris, R., and G. Clavio. 2017. Scale development. In The International Encyclopedia of Communication Research Methods. eds. C.S.D.J. Matthes and R.F. Potter. American Cancer Society.

    Google Scholar 

  • Watson, F.R. 1923. Acoustics of Buildings. New York: Jon Wiley and Sons.

    Google Scholar 

  • Weinzierl, S. 2002. Beethovens Konzerträume. Raumakustik und symphonische Aufführungspraxis an der Schwelle zum modernen Konzertwesen [Beethoven’s concert halls. Room acoustics and symphonic performance practice on the threshold to modern concert life] (Bochinsky, Frankfurt am Main).

    Google Scholar 

  • Weinzierl, S., S. Lepa, and D. Ackermann. 2018. A measuring instrument for the auditory perception of rooms: The Room Acoustical Quality Inventory (RAQI). Journal of the Acoustical Society of America 144 (3): 1245–1257.

    ADS  Google Scholar 

  • Wilkens, H. 1977. Mehrdimensionale Beschreibung subjektiver Beurteilungen der Akustik von Konzertsälen [Multidimensional description of subjective evaluations of the acoustics of concert halls]. Acustica 38: 10–23.

    Google Scholar 

Download references

Acknowledgements

The work reported here was produced within the research unit on “Simulation and Evaluation of Acoustical Environments (SEACEN)”, supported by the Deutsche Forschungsgemeinschaft (FOR 1557). The authors are indebted to all colleagues in this project who contributed to this work, such as D. Ackermann, F. Brinkmann, D. Grigoriev, H. Helmholz, M. Ilse, O. Kokabi, L. Aspöck, and M. Vorländer, as well as to Jens Blauert for many inspiring discussions on the topic. Further, we want to thank two anonymous reviewers for their comments on this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weinzierl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Weinzierl, S., Lepa, S., Thiering, M. (2020). The Language of Rooms: From Perception to Cognition to Aesthetic Judgment. In: Blauert, J., Braasch, J. (eds) The Technology of Binaural Understanding. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00386-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00386-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00385-2

  • Online ISBN: 978-3-030-00386-9

  • eBook Packages: EngineeringEngineering (R0)