Skip to main content

GraphDL: An Ontology for Linked Data Visualization

  • Conference paper
  • First Online:
  • 1027 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11160))

Abstract

Linked Data is an increasingly important source of information and contextual knowledge in Data Science, and its appropriate visualization is key to effectively exploit them. This work presents an ontology to generate graph-based visualizations of Linked Data in a flexible and efficient way. The ontology has been used to successfully visualize DrugBank and DBPedia datasets in a large visualization environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.imperial.ac.uk/data-science/data-observatory/.

  2. 2.

    https://github.com/jgromero/graphdl.

  3. 3.

    http://sl.ugr.es/webgraphdl.

References

  1. Bikakis, N., Papastefanatos, G., Skourla, M., Sellis, T.: A hierarchical aggregation framework for efficient multilevel visual exploration and analysis. Semant. Web 8(1), 139–179 (2017)

    Article  Google Scholar 

  2. Bikakis, N., Sellis, T.K.: Exploration and visualization in the web of big linked data: a survey of the state of the art. In: Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT Workshops (2016)

    Google Scholar 

  3. Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph markup language (GraphML). In: Handbook of Graph Drawing and Visualization, pp. 517–541. CRC Press (2013)

    Google Scholar 

  4. Callahan, A., Cruz-Toledo, J., Dumontier, M.: Ontology-based querying with Bio2RDF’s linked open data. J. Biomed. Semant. 4(1), S1 (2013)

    Article  Google Scholar 

  5. Dudáš, M., Zamazal, O., Svátek, V.: Roadmapping and navigating in the ontology visualization landscape. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 137–152. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9_11

    Chapter  Google Scholar 

  6. Falconer, S.: OntoGraf (2016). http://protegewiki.stanford.edu/wiki/OntoGraf

  7. Fayyad, U., Grinstein, G.G., Wierse, A. (eds.): Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  8. Febretti, A., et al.: CAVE2: a hybrid reality environment for immersive simulation and information analysis. In: Proceedings of the IS&T/SPIE Electronic Imaging, the Engineering Reality of Virtual Reality 2013, San Francisco, USA (2013)

    Google Scholar 

  9. Ghorbel, F., Hamdi, F., Ellouze, N., Métais, E., Gargouri, F.: Visualizing large-scale linked data with memo graph. Procedia Comput. Sci. 112, 854–863 (2017)

    Article  Google Scholar 

  10. Gómez-Romero, J., Molina-Solana, M., Oehmichen, A., Guo, Y.: Visualizing large knowledge graphs: a performance analysis. Future Gener. Comput. Syst. 89, 224–238 (2018)

    Article  Google Scholar 

  11. Haag, F., Lohmann, S., Negru, S., Ertl, T.: OntoViBe 2: advancing the ontology visualization benchmark. In: Lambrix, P. (ed.) EKAW 2014. LNCS (LNAI), vol. 8982, pp. 83–98. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17966-7_9

    Chapter  Google Scholar 

  12. Hinge, A., Auber, D.: Distributed graph layout with spark. In: Proceedings of the IEEE 19th International Conference on Information Visualisation (iV 2015), pp. 271–276 (2015)

    Google Scholar 

  13. Hitzler, P., Krótzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL2 Web Ontology Language Primer, 2nd edn. (2012). https://www.w3.org/TR/owl2-primer/

  14. Horridge, M.: OWLViz (2013). http://protegewiki.stanford.edu/wiki/OWLViz

  15. Hussain, A., Latif, K., Rextin, A.T., Hayat, A., Alam, M.: Scalable visualization of semantic nets using power-law graphs. Appl. Math. Inf. Sci. 8(1), 355–367 (2014)

    Article  MathSciNet  Google Scholar 

  16. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 9(6), 1–12 (2014)

    Article  Google Scholar 

  17. Krivov, S., Williams, R., Villa, F.: GrOWL: a tool for visualization and editing of OWL ontologies. J. Web Semant. 5(2), 54–57 (2007)

    Article  Google Scholar 

  18. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  19. Leigh, J., et al.: Scalable resolution display walls. Proc. IEEE 101(1), 115–129 (2013)

    Article  Google Scholar 

  20. Liepinš, R., Grasmanis, M., Bojārs, U.: OWLGrEd ontology visualizer. In: Proceedings of the International Semantic Web Conference Workshop ISWC-DEV, vol. 1268, pp. 37–42 (2014)

    Google Scholar 

  21. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4), 399–419 (2016)

    Article  Google Scholar 

  22. Mai, G., Janowicz, K., Hu, Y., McKenzie, G.: A linked data driven visual interface for the multi-perspective exploration of data across repositories. In: Proceedings of the 2nd International Workshop on Visualization and Interaction for Ontologies and Linked Data (VOILA2016), pp. 93–101 (2016)

    Google Scholar 

  23. Martin, M., Abicht, K., Stadler, C., Ngonga Ngomo, A.C., Soru, T., Auer, S.: CubeViz - exploration and visualization of statistical linked data. In: Proceedings of the 24th International Conference on World Wide Web (WWW 2015), pp. 219–222 (2015)

    Google Scholar 

  24. McCormick, B.H.: Visualization in scientific computing. ACM SIGBIO Newslett. 10(1), 15–21 (1988)

    Article  Google Scholar 

  25. McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt, W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119 (2016)

    Article  Google Scholar 

  26. Musen, M.A.: The Protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)

    Article  Google Scholar 

  27. Newman, D., et al.: Visualizing search results and document collections using topic maps. J. Web Semant. 8(2–3), 169–175 (2010)

    Article  Google Scholar 

  28. Nikolaou, C., et al.: Sextant: visualizing time-evolving linked geospatial data. J. Web Semant. 35, 35–52 (2015)

    Article  Google Scholar 

  29. Pienta, R., Abello, J., Kahng, M., Chau, D.H.: Scalable graph exploration and visualization: sensemaking challenges and opportunities. In: Proceedings of the 2015 International Conference on Big Data and Smart Computing (BIGCOMP), pp. 271–278, Februrary 2015

    Google Scholar 

  30. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)

    Article  Google Scholar 

  31. Rodriguez, M.A.: The Gremlin graph traversal machine and language. In: Proceedings of the 15th ACM Symposium on Database Programming Languages (DBLP 2015), pp. 1–10 (2015)

    Google Scholar 

  32. Schreiber, G., Raimond, Y.: RDF 1.1 Primer (2014). https://www.w3.org/TR/rdf11-primer/

  33. Sintek, M.: OntoViz (2007). http://protegewiki.stanford.edu/wiki/OntoViz

  34. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3), 431–432 (2011)

    Article  Google Scholar 

  35. Sowa, J.F.: Conceptual graphs. In: van Harmelen, F., Porter, B., Lifschitz, V. (eds.) Handbook of Knowledge Representation, vol. 3, pp. 213–237. Elsevier, Amsterdam (2008). Chap. 5

    Chapter  Google Scholar 

  36. Storey, M.A., Noy, N.F., Musen, M., Best, C., Fergerson, R., Ernst, N.: Jambalaya: an interactive environment for exploring ontologies. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, p. 239 (2002)

    Google Scholar 

  37. TopQuadrant Inc.: TopBraid Composer (2016). http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/

  38. Von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)

    Article  Google Scholar 

  39. Wachsmann, L.: OWLPropViz (2008). http://protegewiki.stanford.edu/wiki/OWLPropViz

  40. Xin, R.S., Crankshaw, D., Dave, A., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: unifying data-parallel and graph-parallel analytics. In: Proceedings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI 2014) (2014)

    Google Scholar 

  41. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot topics in cloud computing (HotCloud) (2010)

    Google Scholar 

Download references

Acknowledgements

Juan Gómez-Romero is supported by Universidad de Granada under the Young Researchers Fellowship Programme, and the Spanish Ministry of Education, Culture and Sport under the José Castillejo Research Stays Programme. Miguel Molina-Solana is supported by the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 743623.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Gómez-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Romero, J., Molina-Solana, M. (2018). GraphDL: An Ontology for Linked Data Visualization. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00374-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00373-9

  • Online ISBN: 978-3-030-00374-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics