Skip to main content

The Huge Machines of Physics: The Bet of the Multidisciplinary Research Teams in Regenerative Medicine

  • Chapter
  • First Online:
  • 373 Accesses

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

In the last decades the biology and medicine made great progresses thanks, on one side to the expoitation of basic discoveries of physical phenomena, and on the other side on the development of physical techniques applied to the medical diagnostic area, like for instance the Nuclear Magnetic Resonance. This chapter presents the Huge Machines of Physics, starting with large accelerators for sub-nuclear physics, like the Large Hadron Collider, and continuing with synchrotrons and free-electron lasers. It will be shown that the last two types of facilities can provide very useful information both for biology and medicine. In particular it will be emphasized the great help provided by the X-ray synchrotron radiation to the regenerative medicine, with examples of tracking of stem cells in investigations of pathologies of cardiological and neurological nature.

There are more things in heaven and earth, Horatio,

Than are dreamt in your philosophy.

– Hamlet Act 1, William Shakespeare

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://home.cern/

  2. Chatrchyan S et al (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30–61

    Article  CAS  Google Scholar 

  3. http://www.esrf.fr

  4. Kamel G, Lefrancois S, Al-Najdawi M, Abu-Hanieh T, Saleh I, Momani Y, Dumas P (2017) EMIRA: the infrared synchrotron radiation beamline at SESAME. Synchrotron Radiat News 30(4):8–10. https://doi.org/10.1080/08940886.2017.1338415

    Article  Google Scholar 

  5. Schwandt J, Fretwurst E, Klanner R, Poehlsen T, Zhang J (2013) Design of the AGIPD sensor for the European XFEL. Nucl Inst Methods Phys Res Sect A 731:252–254

    Article  CAS  Google Scholar 

  6. Ramakrishnan V (2002) Ribosome structure and the mechanism of translation. Cell 108:557–572

    Article  CAS  PubMed  Google Scholar 

  7. Nobel Prizes in Chemistry (2002) The Royal Swedish Academy of Science. http://KVA.SE

  8. Kobilka B (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta Biomembr 1768:794–807

    Article  CAS  Google Scholar 

  9. MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  CAS  PubMed  Google Scholar 

  10. Claesson T (2001) A medical imaging demonstrator of computed tomography and bone mineral densitometry. Universitetsservice US AB, Stockholm

    Google Scholar 

  11. Salomè M, Peyrin F, Cloetens P, Baruchel J, Spanne P, Suorti P, Laval-Jeantot AM (1997) Assessment of bone micro-architecture using 3D computed microtomography. ESRF Newslett 28:26

    Google Scholar 

  12. Ozawa S, Kasugai S (1966) Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 17:23

    Article  Google Scholar 

  13. Marcacci M, Kon M, Zaffagnini S, Giardino R, Rocca M, Corsi A, Benvenuti A, Bianco P, Quarto R, Martin I, Cancedda R (1999) Reconstruction of extensive long bone defects in sheep using porous hydroxyapatite sponges. Calcif Tissue Int 64:83

    Article  CAS  PubMed  Google Scholar 

  14. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical defects of sheep long bones. J Biomed Mater Res 49:328

    Article  CAS  PubMed  Google Scholar 

  15. Mastrogiacomo M, Komlev VS, Hausard M, Peyrin F, Turquier F, Casari S, Cedola A, Rustichelli F, Cancedda R (2004) Synchrotron radiation microtomography of bone engineered from bone marrow stromal cells. Tissue Eng 10:1767–1774

    Article  CAS  PubMed  Google Scholar 

  16. Atwood RC, Jones JR, Lee PD, Hench LL (2004) Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography. Scr Mater 51:1029–1033

    Article  CAS  Google Scholar 

  17. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 226:4817–4827

    Article  Google Scholar 

  18. Ho ST, Hutmacher DW (2005) Application of micro CT and computation modeling in bone tissue engineering. Comput Aid Des 37:1151–1161

    Article  Google Scholar 

  19. Shao XX, Hutmacher DW, Ho ST, Goh JCH, Lee EH (2005) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27:1071–1080

    Article  PubMed  Google Scholar 

  20. Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A et al (2004) Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25:4947–4954

    Article  CAS  PubMed  Google Scholar 

  21. Mathieua LM, Muellerb TL, Bourbana PE, Piolettic DP, Mullerb R, Mansona JAE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone-tissue engineering. Biomaterials 27:905–916

    Article  Google Scholar 

  22. Baruchel J, Lodini A, Romanzetti S, Rustichelli F, Scrivani A (2001) Phase-contrast imaging of thin biomaterials. Biomaterials 22:1515–1520

    Article  CAS  PubMed  Google Scholar 

  23. Wellington SL, Vinegar HJ (1987) X-ray computerized tomography. J Pet Technol 39(8):885–898

    Article  Google Scholar 

  24. Bonse U, Busch F (1999) X-ray computed microtomography (mCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 65(1/2):133–169

    Google Scholar 

  25. Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F, Rustichelli F (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28:2505–2524

    Article  CAS  PubMed  Google Scholar 

  26. Komlev VS, Peyrin F, Mastrogiacomo M, Cedola A, Papadimitropoulos A, Rustichelli F et al (2006) Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: a X-ray computed microtomography study. Tissue Eng 12:3449–3458

    Article  CAS  PubMed  Google Scholar 

  27. Papadimitropoulos A, Mastrogiacomo M, Peyrin F, Molinari E, Komlev V, Rustichelli F, Cancedda R (2007) Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an x-ray computed microtomography study. Biotechnol Bioeng 98(1):271–281

    Article  CAS  PubMed  Google Scholar 

  28. Komlev V, Mastrogiacomo M, Peyrin F, Cancedda R, Rustichelli F (2009) X-ray synchrotron radiation pseudo-holotomography as a new imaging technique to investigate angio-and microvasculogenesis with no usage of contrast agents. Tissue Eng 15(3):425–430

    Article  CAS  Google Scholar 

  29. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino NF, De Rosa A, Laino L, D'Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in line holotomography revealed that stem cells regenerate a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2(4):316–324. https://doi.org/10.5966/sctm.2012-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Torrente Y, Belicchi M, Sampaolesi M et al (2004) Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Investig 114(2):182–195. https://doi.org/10.1172/JCI200420325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sampaolesi M et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblast. Science 301:487–492

    Article  CAS  PubMed  Google Scholar 

  32. Torrente Y, Gavina M, Belicchi M, Fiori F, Komlev V, Bresolin N, Rustichelli F (2006) High-resolution X-ray microtomography for three-dimensional visualization of human stem cell muscle homing. FEBS Lett 580:5759–5764

    Article  CAS  PubMed  Google Scholar 

  33. Farini A, Villa C, Manescu A, Fiori F, Giuliani A, Razini P, Sitzia C, Del Fraro G, Belicchi M, Meregalli M, Rustichelli F, Torrente Y (2012) Novel insight into stem cell trafficking in dystrophic muscles. Int J Nanomed 7:3059–3067

    Google Scholar 

  34. Fratini M et al (2015) Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord. Sci Rep 5:8514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bukreeva I et al (2017) Quantitative 3D investigation of neuronal network in mouse spinal cord model. Sci Rep 7:41054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cedola A et al (2017) X-ray phase contrast tomography reveals early vascular alterations and neuronal loss in a multiple sclerosis model. Sci Rep 7:5890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benjamin EJ et al (2018) Heart disease and stroke statistics update: a report from the American Heart Association. Circulation 137(10):e67–e492. https://doi.org/10.1161/CIR.0000000000000558

    Article  PubMed  Google Scholar 

  38. Stamm C et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  39. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  40. Tse HF, Kwong YL, Chan JKF, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49

    Article  PubMed  Google Scholar 

  41. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK et al (2004) Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363:751–756

    Article  CAS  PubMed  Google Scholar 

  42. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  CAS  PubMed  Google Scholar 

  43. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy: initial results of the SCIPIO trial. Lancet 378:1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  44. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  45. Giuliani A, Frati C, Rossini A, Komlev V, Lagrasta C, Savi M et al (2011) High-resolution X-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. J Tissue Eng Regen Med 5(8):e168–e178. https://doi.org/10.1002/term.409

    Article  PubMed  Google Scholar 

  46. Leri A, Kajstura J, Anversa P, Frishman WH (2008) Myocardial regeneration and stem cells repair. Curr Probl Cardiol 33:91–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Prof. Federico Quaini and Dr. Mario Stefanon for their precious scientific contributions and to Mr. Mario Pergolini for his outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Rustichelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustichelli, F. (2018). The Huge Machines of Physics: The Bet of the Multidisciplinary Research Teams in Regenerative Medicine. In: Giuliani, A., Cedola, A. (eds) Advanced High-Resolution Tomography in Regenerative Medicine. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-00368-5_1

Download citation

Publish with us

Policies and ethics