Districting Decisions in Home Health Care Services: Modeling and Case Study

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 916)


Home health care (HHC) services are a growing segment in the global health care industry in which patients receive coordinated medical care at their homes. When designing the service, HHC providers face a set of logistics decisions that include the districting configuration of the coverage area. In HHC, the districting problem seeks to group small geographic basic units-BUs (i.e., city quarters) into districts with balanced workloads. In this work, we present a modeling approach for the problem that includes a mixed integer linear programming (MILP) formulation and a greedy randomized adaptive search procedure (GRASP). The MILP formulation solves instances up to 44 BUs, while the GRASP allows to solve instances up to 484 BUs in less than 2.52 min. Computational experiments performed with a set of real instances from a Colombian HHC provider, show that the GRASP can reduce workload imbalances in a 57%.


Home health care Districting Mixed integer linear programming Greedy randomized adaptive search procedure 



The authors are grateful to Universidad of Antioquia, specifically to the Vicerrectoría de Investigación, for their partial funding in the research project PRV16-1-03. We also thank the IPS Universitaria and their HHC program (PAD) for providing the information used in this work.


  1. 1.
    Bashir, B., Chabrol, M., Caux, C.: Literature review in home care. In: 9th International Conference on Modeling, Optimization & Simulation (2012)Google Scholar
  2. 2.
    Bennett, A.R.: Home Health Care Logistics Planning. Doctoral dissertation, Georgia Institute of Technology (2010)Google Scholar
  3. 3.
    Benzarti, E., Sahin, E., Dallery, Y.: Operations management applied to home care services : analysis of the districting problem. Decis. Support. Syst. 55(2), 587–598 (2013). Scholar
  4. 4.
    Blais, M., Lapierre, S.D., Laporte, G.: Solving a home-care districting problem in an urban setting. J. Oper. Res. Soc. 54(11), 1141–1147 (2003). Scholar
  5. 5.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London (1976)CrossRefGoogle Scholar
  6. 6.
    Colombia, Ministerio de Salud y Protección Social: Registro Especial de Prestadores de Servicios de Salud (2018).
  7. 7.
    Duque, J.C., Church, R.L., Middleton, R.S.: The p-regions problem. Geogr. Anal. 43(1), 104–126 (2011)CrossRefGoogle Scholar
  8. 8.
    Fikar, C., Hirsch, P.: Home health care routing and scheduling: a review. Comput. Oper. Res. 77, 86–95 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Genet, N., Boerma, W., Kroneman, M., Hutchinson, A., Saltman, R.: Home care across Europe: case studies (2013)Google Scholar
  10. 10.
    Gutiérrez, E.V., Vidal, C.J.: Home health care logistics management: framework and research perspectives. Int. J. Ind. Eng. Manag. (IJIEM) 4(3), 173–182 (2013)Google Scholar
  11. 11.
    Gutierrez, E.V.: Home Health Care Logistics Management Problems: An Integrated Approach to support Decisions with Hierarchical Interdependencies. Doctoral dissertation, Universidad del Valle (2014)Google Scholar
  12. 12.
    Gutiérrez, E.V., Vidal, C.J.: A home health care districting problem in a rapid-growing city. Revista Ingenieria y Universidad 19(1), 87–113 (2015)CrossRefGoogle Scholar
  13. 13.
    Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Harris-Kojetin, L., Sengupta, M., Park-Lee, E., Valverde, R.: Long-term care services in the United States: 2013 overview. Vital Health Stat. Ser. 3, Anal. Epidemiol. Stud. 37, 1–107 (2013)Google Scholar
  15. 15.
    Naveh, B.: JGraphT - a free Java graph library (2018).
  16. 16.
    Resende, M.G., Ribeiro, C.C.: Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer, New York (2016). Scholar
  17. 17.
    Ricca, F., Scozzari, A., Simeone, B.: Political districting: from classical models to recent approaches. Ann. Oper. Res. 204(1), 271–299 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ríos-Mercado, R.Z.: Assessing a metaheuristic for large-scale commercial districting. Cybern. Syst. 47(4), 321–338 (2016)CrossRefGoogle Scholar
  19. 19.
    Rios-Mercado, R.Z., Escalante, H.J.: GRASP with path relinking for commercial districting. Expert Syst. Appl. 44, 102–113 (2016)CrossRefGoogle Scholar
  20. 20.
    Ríos-Mercado, R.Z., Fernández, E.: A reactive GRASP for a commercial territory design problem with multiple balancing requirements. Comput. Oper. Res. 36(3), 755–776 (2009)CrossRefGoogle Scholar
  21. 21.
    Sherali, H.D., Smith, J.C.: Improving discrete model representations via symmetry considerations. Manag. Sci. 47(10), 1396–1407 (2001)CrossRefGoogle Scholar
  22. 22.
    Shirabe, T.: A model of contiguity for spatial unit allocation. Geogr. Anal. 37(1), 2–16 (2005)CrossRefGoogle Scholar
  23. 23.
    World Bank: Life expectancy learning module (2011).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Industrial, Facultad de IngenieríaUniversidad de AntioquiaMedellínColombia
  2. 2.Departamento de Ciencias Matemáticas, Escuela de CienciasUniversidad EAFITMedellínColombia

Personalised recommendations