Bioinformatics Approach to Analyze Influenza Viruses

  • Karina Salvatierra
  • Hector FlorezEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 916)


Influenza viruses are highly contagious respiratory illness and responsible for the severe annual morbidity and mortality worldwide. They are classified into types, influenza A, B and C. Influenza viruses accumulate point mutations during replication, especially in three proteins: matrix-membrane, hemagglutinin, and neuraminidase. Nucleotide and amino acid variations may produce selective advantages for viral strains, in the matrix-membrane and neuraminidase may be related to eluding host immunity, while variations in the hemagglutinin are responsible for the appearance of antigenic drift that evade preexisting host immunity and cause reinfections. In this paper, we present a bioinformatics study for detecting mutations implicated in variability in the hemagglutinin, neuraminidase and matrix-membrane of influenza strains using our bioinformatics tool BMA. In this study, we calculate, compare, and analyze genetic variations associated with antigenic drift in hemagglutinin protein from influenza A H1N1. BMA allows users to identify mutations in sequences quickly and efficiently for the detection of antigenic drift.


Bioinformatics Hemagglutinin Neuraminidase Influenza viruses 



Authors are grateful for the support received from the Information Technologies Innovation Research Group.


  1. 1.
    Lamb, R.A.: Orthomyxoviridae: the viruses and their replication. In: Fields Virology (2001)Google Scholar
  2. 2.
    Obenauer, J.C., et al.: Large-scale sequence analysis of avian influenza isolates. Science 311(5767), 1576–1580 (2006)CrossRefGoogle Scholar
  3. 3.
    Osterhaus, A., Rimmelzwaan, G., Martina, B., Bestebroer, T., Fouchier, R.: Influenza B virus in seals. Science 288(5468), 1051–1053 (2000)CrossRefGoogle Scholar
  4. 4.
    Youzbashi, E., Marschall, M., Chaloupka, I., Meier-Ewert, H.: Distribution of influenza C virus infection in dogs and pigs in Bavaria. Tierarztl. Prax. 24(4), 337–342 (1996)Google Scholar
  5. 5.
    Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y.: Evolution and ecology of influenza A viruses. Microbiol. Rev. 56(1), 152–179 (1992)Google Scholar
  6. 6.
    Centers for Disease Control and Prevention (CDC), et al.: Update: influenza activity-united states and worldwide, 1999–2000 season, and composition of the 2000–01 influenza vaccine. MMWR Morb. Mortal. Wkly. Rep. 49(17), 375 (2000)Google Scholar
  7. 7.
    Treanor, J.J.: Influenza vaccination. N. Engl. J. Med. 375(13), 1261–1268 (2016). PMID: 27682035CrossRefGoogle Scholar
  8. 8.
    Barbey-Martin, C., et al.: An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294(1), 70–74 (2002)CrossRefGoogle Scholar
  9. 9.
    Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D.: Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78(22), 12665–12667 (2004)CrossRefGoogle Scholar
  10. 10.
    Yen, H.L., et al.: Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J. Virol. 80(17), 8787–8795 (2006)CrossRefGoogle Scholar
  11. 11.
    Lamb, R.A., Lai, C.J., Choppin, P.W.: Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc. Natl. Acad. Sci. 78(7), 4170–4174 (1981)CrossRefGoogle Scholar
  12. 12.
    Furuse, Y., Suzuki, A., Kamigaki, T., Oshitani, H.: Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis. Virol. J. 6(1), 67 (2009)CrossRefGoogle Scholar
  13. 13.
    Eyer, L., Hruska, K., et al.: Antiviral agents targeting the influenza virus: a review and publication analysis. Vet. Med. 58(3), 113–185 (2013)CrossRefGoogle Scholar
  14. 14.
    Bloom, J.D., Gong, L.I., Baltimore, D.: Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328(5983), 1272–1275 (2010)CrossRefGoogle Scholar
  15. 15.
    McKimm-Breschkin, J.L., et al.: Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob. Agents Chemother. 40(1), 40–46 (1996)CrossRefGoogle Scholar
  16. 16.
    Yang, P., Bansal, A., Liu, C., Air, G.M.: Hemagglutinin specificity and neuraminidase coding capacity of neuraminidase-deficient influenza viruses. Virology 229(1), 155–165 (1997)CrossRefGoogle Scholar
  17. 17.
    Blick, T.J., et al.: The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology 246(1), 95–103 (1998)CrossRefGoogle Scholar
  18. 18.
    Hensley, S.E., et al.: Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326(5953), 734–736 (2009)CrossRefGoogle Scholar
  19. 19.
    Medina, R.A.: 1918 influenza virus: 100 years on, are we prepared against the next influenza pandemic? Nat. Rev. Microbiol. 16(2), 61–62 (2018)CrossRefGoogle Scholar
  20. 20.
    Salvatierra, K., Florez, H.: Biomedical mutation analysis (BMA): a software tool for analyzing mutations associated with antiviral resistance. F1000Research 5 (2016)CrossRefGoogle Scholar
  21. 21.
    Salvatierra, K., Florez, H.: Pathogen sequence signature analysis (PSSA): a software tool for analyzing sequences to identify microorganism genotypes. F1000Research 6 (2017)Google Scholar
  22. 22.
    Salvatierra, K., Florez, H.: Analysis of hepatitis C virus in hemodialysis patients. Infectio 20(3), 130–137 (2016)CrossRefGoogle Scholar
  23. 23.
    Salvatierra, K., Florez, H.: Prevalence of hepatitis B and C infections in hemodialysis patients. F1000Research 5 (2016)CrossRefGoogle Scholar
  24. 24.
    Florez, H., Salvatierra, K.: A web-based approach for analyzing microorganism sequences. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 96–107. Springer, Cham (2017). Scholar
  25. 25.
    Florez, H., Salvatierra, K.: Bioinformatics study of mutations of resistance to antivirals in the NS5A Gen of HCV. Information 20(9), 6665–6672 (2017)Google Scholar
  26. 26.
    Paessler, S., Veljkovic, V.: Using electronic biology based platform to predict flu vaccine efficacy for 2018/2019. F1000Research 7 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Nacional de MisionesPosadasArgentina
  2. 2.Universidad Distrital Francisco Jose de CaldasBogotáColombia

Personalised recommendations