Skip to main content

Validation of EEG Pre-processing Pipeline by Test-Retest Reliability

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

Artifact removal and validation of pre-processing approaches remain as an open problem in EEG analysis. Cleaning data is a critical step in EEG analysis, per-formed to increase the signal-to-noise ratio and to eliminate unwanted artifacts. Methodologies commonly used for EEG pre-processing are: filtering, interpolation of bad channels, epoch segmentation, re-referencing, and elimination of physiological artifacts such as eye blinking or muscular activity. It is important to consider that the order and application of these steps affect signal quality for further analysis. In order to validate a pre-processing pipeline that can be considered in a clinical follow-up, this paper evaluated test-retest reliability of EEG recordings. EEG signals were acquired during eyes-closed resting state condition in two groups of healthy subjects with a follow-up of one and six months respectively. Signals were pre-processed with five different methodologies commonly used in literature. Test-retest reliability by intraclass correlation coefficient was calculated for power spectrum measures in each pre-processing approach and group. The results showed how test-retest reliability was significantly affected by pre-processing pipeline in both follow-ups. The pre-processing pipeline that com-bines robust reference to average and wavelet ICA improves the test-retest reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacDonald, D.B.: Electroencephalography: Basic Principles and Applications. Elsevier, New York City (2015)

    Google Scholar 

  2. Millett, D., Coutin-Churchman, P., Stern, J.M.: Basic principles of electroencephalography. In: Brain Mapping, pp. 75–80. Elsevier (2015)

    Google Scholar 

  3. Indic, P., Pratap, R., Nampoori, V.P., Pradhan, N.: Significance of time scales in nonlinear dynamical analysis of electroencephalogram signals. Int. J. Neurosci. 99, 181–194 (1999)

    Article  Google Scholar 

  4. Medeiros, A.P., Anghinah, R., Smidth, M.T., Silva, J.M.: The clinical use of quantitative EEG in cognitive disorders. Dement Neuropsychol. 3, 195–203 (2009)

    Article  Google Scholar 

  5. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, Hoboken (2007)

    Book  Google Scholar 

  6. Başar, E., Güntekin, B.: A short review of alpha activity in cognitive processes and in cognitive impairment. Int. J. Psychophysiol. 86, 25–38 (2012). https://doi.org/10.1016/j.ijpsycho.2012.07.001

    Article  Google Scholar 

  7. Babiloni, C., et al.: Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study. Hum. Brain Mapp. 27, 162–172 (2006). https://doi.org/10.1002/hbm.20175

    Article  Google Scholar 

  8. Başar, E.: A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 86, 1–24 (2012). https://doi.org/10.1016/j.ijpsycho.2012.07.002

    Article  Google Scholar 

  9. Lizio, R., Vecchio, F., Frisoni, G.B., Ferri, R., Rodriguez, G., Babiloni, C.: Electroencephalographic rhythms in alzheimer’s disease. Int. J. Alzheimers. Dis. 2011, 1–11 (2011). https://doi.org/10.4061/2011/927573

    Article  Google Scholar 

  10. Widmann, A., Schröger, E.: Filter effects and filter artifacts in the analysis of electrophysiological data. Front Psychol. 3, 233 (2012)

    Google Scholar 

  11. Winkler, I., Haufe, S., Tangermann, M.: Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 7, 30 (2011). https://doi.org/10.1186/1744-9081-7-30

    Article  Google Scholar 

  12. Tavakoli, P., Campbell, K.: The recording and quantification of event-related potentials: II. Signal processing and analysis. Quant. Methods Psychol. 11, 98–112 (2015)

    Article  Google Scholar 

  13. Gross, J., et al.: Good practice for conducting and reporting MEG research. Neuroimage 65, 349–363 (2013). https://doi.org/10.1016/j.neuroimage.2012.10.001

    Article  Google Scholar 

  14. Tavakoli, P., Campbell, K.: The recording and quantification of event-related potentials: I. Stimulus presentation and data acquisition. Quant. Methods Psychol 11, 89–97 (2015)

    Article  Google Scholar 

  15. Wallstrom, G.L., Kass, R.E., Miller, A., Cohn, J.F., Fox, N.A.: Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. Int. J. Psychophysiol. 53, 105–119 (2004). https://doi.org/10.1016/j.ijpsycho.2004.03.007

    Article  Google Scholar 

  16. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K.A.: The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 1–20 (2015). https://doi.org/10.3389/fninf.2015.00016

    Article  Google Scholar 

  17. Castellanos, N.P., Makarov, V.A.: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods. 158, 300–312 (2006). https://doi.org/10.1016/j.jneumeth.2006.05.033

    Article  Google Scholar 

  18. Cannon, R.L., et al.: Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neurosci. Lett. 518, 27–31 (2012). https://doi.org/10.1016/j.neulet.2012.04.035

    Article  Google Scholar 

  19. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004). https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  20. Delorme, A., Sejnowski, T.J., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimaging. 34, 1443–1449 (2007). https://doi.org/10.1016/j.neuroimage.2006.11.004

    Article  Google Scholar 

  21. Suárez-Revelo, J., Ochoa-Gomez, J., Duque-Grajales, J., Montoya-Betancur, A., Sanchez-Lopez, S.: Test – retest reliability in electroencephalographic recordings. In: 2015 20th Symposium on Signal Processing, Images and Computer Vision (STSIVA), pp. 1–5 (2015). https://doi.org/10.1109/stsiva.2015.7330412

  22. Suarez-Revelo, J., Ochoa-Gomez, J., Duque-Grajales, J.: Improving test-retest reliability of quantitative electroencephalography using different preprocessing approaches. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 961–964. IEEE (2016)

    Google Scholar 

  23. Mitra, P., Bokil, H.: Observed Brain Dynamics. Oxford University Press, New York (2008)

    Google Scholar 

  24. McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlations coefficients: Correction. Psychol. Methods 1, 390 (1996). https://doi.org/10.1037/1082-989x.1.4.390

    Article  Google Scholar 

  25. McEvoy, L., Smith, M., Gevins, A.: Test–retest reliability of cognitive EEG. Clin. Neurophysiol. 111, 457–463 (2000). https://doi.org/10.1016/S1388-2457(99)00258-8

    Article  Google Scholar 

  26. Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., Ramos-Loyo, J.: Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clin. Neurophysiol. 118, 9–21 (2007). https://doi.org/10.1016/j.clinph.2006.08.013

    Article  Google Scholar 

  27. Hatz, F., Hardmeier, M., Bousleiman, H., Rüegg, S., Schindler, C., Fuhr, P.: Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG. Clin. Neurophysiol. 126, 268–274 (2015). https://doi.org/10.1016/j.clinph.2014.05.014

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Vicerrectoría de Investigación of Universidad de Antioquia (CODI), Project “Neurofisiología y Neuropsicología en Enfermedad Ganglio Basal”, code PRG2014-768, Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), announcement N. 757 Doctorados Nacionales, and the project “Identificación de Biomarcadores Preclínicos en Enfermedad de Alzheimer a través de un Seguimiento Longitudinal de la Actividad Eléctrica Cerebral en Poblaciones con Riesgo Genético”, code 111577757635, announcement 777-2017 of COLCIENCIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jazmín Ximena Suárez-Revelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suárez-Revelo, J.X., Ochoa-Gómez, J.F., Tobón-Quintero, C.A. (2018). Validation of EEG Pre-processing Pipeline by Test-Retest Reliability. In: Figueroa-García, J., Villegas, J., Orozco-Arroyave, J., Maya Duque, P. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-030-00353-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00353-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00352-4

  • Online ISBN: 978-3-030-00353-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics