Skip to main content

Real-Time Frequency-Decoupling Control for a Hybrid Energy Storage System in an Active Parallel Topology Connected to a Residential Microgrid with Intermittent Generation

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

This paper presents a study by simulation of the performance of a Hybrid Energy Storage System (HESS) integrated to a residential microgrid. The storage system is composed of li-ion battery units and supercapacitors connected in a parallel active topology. An optimization-based real-time frequency-decoupling control strategy is used for the power split and for the assignation of the high-frequency and low-frequency energy components to the storage mediums. The simulation system emulates a photovoltaic generation source with typical intermittence of the injected power, the typical loads of a residential electric grid, and a HESS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DOE, Summary Report: 2012 DOE Microgrid Workshop (2012)

    Google Scholar 

  2. Trujillo, C., et al.: Microrredes eléctricas, 1st ed. Universidad Distrital Francisco José de Caldas, Bogotá (2015)

    Google Scholar 

  3. Kan, S.Y., Verwaal, M., Broekhuizen, H.: The use of battery-capacitor combinations in photovoltaic powered products. J. Power Sources 162(2), 971–974 (2006)

    Article  Google Scholar 

  4. Chowdhury, M.: Grid integration impacts and energy storage systems for wind energy applications—a review. In: IEEE Power and Energy Society General Meeting, pp. 1–8 (2011)

    Google Scholar 

  5. Dougal, R.A., Liu, S., White, R.E.: Power and life extension of battery-ultracapacitor hybrids. IEEE Trans. Compon. Packag. Technol. 25(1), 120–131 (2002)

    Article  Google Scholar 

  6. Khaligh, A.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the Art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010)

    Article  Google Scholar 

  7. Mendis, N., Muttaqi, K.M., Perera, S.: Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems. IEEE Trans. Smart Grid 5(2), 944–953 (2014)

    Article  Google Scholar 

  8. Lahyani, A., Venet, P., Guermazi, A., Troudi, A.: Battery/supercapacitors combination in uninterruptible power supply (UPS). IEEE Trans. Power Electron. 28(4), 1509–1522 (2013)

    Article  Google Scholar 

  9. Bolborici, V., Dawson, F., Lian, K.: Hybrid energy storage systems. IEEE Ind. Appl. Mag. 20(4), 31–40 (2014)

    Article  Google Scholar 

  10. Ortúzar, M., Moreno, J., Dixon, J.: Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation. IEEE Trans. Ind. Electron. 54(4), 2147–2156 (2007)

    Article  Google Scholar 

  11. Sanfélix, J., Messagie, M., Omar, N., Van Mierlo, J., Hennige, V.: Environmental performance of advanced hybrid energy storage systems for electric vehicle applications. Appl. Energy 137, 925–930 (2014)

    Article  Google Scholar 

  12. Etxeberria, A., Vechiu, I., Camblong, H.: Hybrid energy storage systems for renewable energy sources integration in microgrids : a review. In: Power Electronics Conference International, pp. 532–537 (2010)

    Google Scholar 

  13. Narvaez, A., Cortes, C., Trujillo, C.L.: Comparative analysis of topologies for the interconnection of batteries and supercapacitors in a hybrid energy storage system. In: IEEE 8th International Symposium on Power Electronics for Distributed Generation (2017)

    Google Scholar 

  14. Bocklisch, T.: Hybrid energy storage systems for renewable energy applications. Energy Procedia 73, 103–111 (2015)

    Article  Google Scholar 

  15. Kuperman, A., Aharon, I.: Battery-ultracapacitor hybrids for pulsed current loads: a review. Renew. Sustain. Energy Rev. 15(2), 981–992 (2011)

    Article  Google Scholar 

  16. Guerrero, J.M., Chandorkar, M., Lee, T., Loh, P.C.: Advanced control architectures for intelligent microgrids; Part I: decentralized and hierarchical control. IEEE Trans. Ind. Electron. 60(4), 1254–1262 (2013)

    Article  Google Scholar 

  17. Xu, Q., Hu, X., Wang, P., Xiao, J., Tu, P., Wen, C.: A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid. Ind. Electron. IEEE Trans. 64(7), 5930–5941 (2017)

    Article  Google Scholar 

  18. Xu, Q., Xiao, J., Hu, X., Wang, P., Lee, M.Y.: Decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state of charge recovery. IEEE Trans. Ind. Electron. 64, 7098–7108 (2017)

    Article  Google Scholar 

  19. Singh, R.K., Chauhan, N.S., Mishra, S.: A novel average current-mode controller based optimal battery charger for automotive applications. In: 2012 International Conference on Devices, Circuits and Systems, ICDCS 2012, pp. 135–139 (2012)

    Google Scholar 

  20. De La Fuente, D.V., Rodriguez, C.L.T., Garcera, G., Figueres, E., Gonzalez, R.O.: Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities. IEEE Trans. Ind. Electron. 60(4), 1571–1581 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

First author thanks Universidad Distrital Francisco José de Caldas for the financial support in his doctoral studies through the study commission contract N° 000101-2016.

The third author thanks the National Fund for the financing of science, technology and innovation “Francisco José de Caldas Fund” of the Administrative Department of Science, Technology and Innovation - COLCIENCIAS, for the financial support to the present work (Contract: FP44842 - 031 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Narvaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narvaez, A., Cortes, C., Trujillo, C. (2018). Real-Time Frequency-Decoupling Control for a Hybrid Energy Storage System in an Active Parallel Topology Connected to a Residential Microgrid with Intermittent Generation. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics