Skip to main content

Event-Triggered Digital Implementation of MPPT for Integration of PV Generators in DC Buses of Microgrids

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

This paper presents an event-triggered approach to optimally implement a Maximum Power Point Tracking (MPPT) algorithm into a Digital Signal Processor (DSP). The proposed method allows improving the amount and distribution of time required for executing control tasks. The used nested loop control architecture has an outer loop of MPPT generating the conductance reference used by an inner loop which regulates the input conductance of a DC-DC converter. This last loop enforces a sliding-mode loss-free-resistor behavior for the power converter by means of a simple hysteresis comparator. Computations required by the MPPT algorithm are synchronously executed by the two possible commutation events produced by the inner loop during a switching period. Then, the acquisition of signals must be activated only at an instant before each one of the switching events, releasing the most of the time to implement other tasks. This last characteristic and the use of a nested loop control architecture facilitate the integration of the other essential control functions for photovoltaic (PV) generators in microgrids. Simulation and experimental results confirm the high potetialities of this implementation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiayi, H., Chuanwen, J., Rong, X.: A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 12(9), 2472–2483 (2008)

    Article  Google Scholar 

  2. Lidula, N.W.A., Rajapakse, A.D.: Microgrids research: a review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 15(1), 186–202 (2011)

    Article  Google Scholar 

  3. Ustun, T.S., Ozansoy, C., Zayegh, A.: Recent developments in microgrids and example cases around the world—a review. Renew. Sustain. Energy Rev. 15(8), 4030–4041 (2011)

    Article  Google Scholar 

  4. IEEE 946-2004 (Revision of IEEE 946-1992): Recommended Practice for the Design of DC Auxiliary Power Systems for Generating Systems. Accessed 15 May 2018

    Google Scholar 

  5. IET Standards: Code of Practice for Low and Extra Low Voltage Direct Current Power Distribution in Buildings (2015)

    Google Scholar 

  6. Alsharif, R., Odavic, M.: Photovoltaic generators interfacing a DC micro-grid: design considerations for a double-stage boost power converter system. In: Proceedings of 18th European Conference on Power Electronics and Applications (EPE), Karlsruhe, pp. 1–10 (2016)

    Google Scholar 

  7. Bendib, B., Belmili, H., Krim, F.: A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637–648 (2015)

    Article  Google Scholar 

  8. Onat, N.: Recent developments in maximum power point tracking technologies for photovoltaic systems. Int. J. Photoenergy 2010, 1–11 (2010). Article ID 245316

    Article  Google Scholar 

  9. Abdelsalam, K., Massoud, A.M., Ahmed, S., Enjeti, P.N.: High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans. Power Electron. 26(4), 1010–1021 (2011)

    Article  Google Scholar 

  10. Seyedmahmoudian, A., Oo, M.T., Arangarajan, V., Shafiullah, G.M., Stojcevski, A.: Low cost MPPT controller for a photovoltaic-based microgrid. In: Power Engineering Conference (AUPEC), Perth, pp. 1–6 (2014)

    Google Scholar 

  11. Yuan, W., Yang, J., Sun, Y., Han, H., Hou, X., Su, M.: A novel operation mode for PV-storage independent microgrids with MPPT based droop control. In: Proceedings of IEEE 3rd International Future Energy Electronics Conference (IFEEC), Kaohsiung, pp. 936–941 (2017)

    Google Scholar 

  12. Lopez-Santos, O., García, G., Martinez-Salamero, L.: Derivation of a global model of a two-stage photovoltaic microinverter using sliding-mode control. In: Proceedings of IEEE 13th Brazilian Power Electronics Conference (COBEP), Fortaleza, pp. 1–6 (2015)

    Google Scholar 

  13. Lopez-Santos, O.: Contribution to the DC-AC conversion in photovoltaic systems: module oriented converters, pp. 1–248. Ph.D. dissertation, Institut National de Sciences Apliquées (INSA) de Toulouse (2015)

    Google Scholar 

  14. Maity, S., Sahu, P.K.: Modeling and analysis of a fast and robust module-integrated analog photovoltaic MPP tracker. IEEE Trans. Power Electron. 31(1), 280–291 (2016)

    Article  Google Scholar 

  15. Leyva, R., Alonso, C., Queinnec, I., Cid-Pastor, A., Lagrange, D., Martinez-Salamero, L.: MPPT of photovoltaic systems using extremum - seeking control. IEEE Trans. Aerosp. Electron. Syst. 42(1), 249–258 (2006)

    Article  Google Scholar 

  16. Reza Tousi, S.M., Moradi, M.H., Basir, N.S., Nemati, M.: A function-based maximum power point tracking method for photovoltaic systems. IEEE Trans. Power Electron. 31(3), 2120–2128 (2016)

    Article  Google Scholar 

  17. Levron, Y., Shmilovitz, D.: Maximum power point tracking employing sliding mode control. IEEE Trans. Circuits Syst. I Regul. Pap. 60(3), 724–732 (2013)

    Article  MathSciNet  Google Scholar 

  18. Cabal C., et al.: Adaptive digital MPPT control for photovoltaic applications. In: Proceedings of ISIE IEEE International Symposium on Industrial Electronics, Vigo, pp. 2414–2419 (2007)

    Google Scholar 

  19. Jiang, Y., Qahouq, J.A.A., Haskew, T.A.: Adaptive step size with adaptive-perturbation-frequency digital MPPT controller for a single-sensor photovoltaic solar system. IEEE Trans. Power Electron. 28(7), 3195–3205 (2013)

    Article  Google Scholar 

  20. Microchip Technology. dsPIC30F4011/12 Data Sheet: High Performance Digital Signal Controllers, pp. 1–228 (2005)

    Google Scholar 

  21. Techakittiroj, K., Aphiratsakun, N., Threevithayanon, W., Nyun, S.: TMS320F241 DSP boards for power-electronics applications. AU J. Technol. 6(4), 168–172 (2003)

    Google Scholar 

  22. Bosque, J.M., Valderrama-Blavi, H., Flores-Bahamonde, F., Vidal-Idiarte, E., Martínez-Salamero, L.: Using low-cost microcontrollers to implement variable hysteresis-width comparators for switching power converters. IET Power Electron. 11(5), 787–795 (2017)

    Article  Google Scholar 

  23. Donkers, M.C.F., Heemels, W.: Output-based event-triggered control with guaranteed ℒ∞-gain and improved event-triggering. In: Proceedings of 49th IEEE Conference on Decision and Control (CDC), Atlanta, pp. 3246–325 (2010)

    Google Scholar 

  24. Rathore, N., Fulwani, D.: Event triggered control scheme for power converters. In: Proceedings of 42nd Annual Conference on IEEE Industrial Electronics Society (IECON), Florence, pp. 1342–1347 (2016)

    Google Scholar 

  25. Cid-Pastor, A., Martinez-Salamero, L., El Aroudi, A., Giral, R., Calvente, J., Leyva, R.: Synthesis of loss-free-resistors based on sliding-mode control and its applications in power processing. Control Eng. Pract. 21(5), 689–699 (2013)

    Article  Google Scholar 

  26. Haroun, R., El Aroudi, A., Cid-Pastor, A., Martinez-Salamero, L.: Sliding mode control of output-parallel-connected two-stage boost converters for PV systems. In: IEEE 11th International Multi-Conference on Systems Signals & Devices (SSD), Barcelona, pp. 1–6 (2014)

    Google Scholar 

  27. Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L.: Digital loss-free resistor for power factor correction applications. In: Proceedings of 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, pp. 3468–3473 (2013)

    Google Scholar 

  28. Marple, S.L., Marple, S.L.: Digital Spectral Analysis: with Applications, vol. 5. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  29. Golestan, S., Ramezani, M., Guerrero, J.M., Freijedo, F.D., Monfared, M.: Moving average filter-based phase-locked loops: performance analysis and design guidelines. IEEE Trans. Power Electron. 29(6), 2750–2763 (2014)

    Article  Google Scholar 

  30. Lopez Santos, O., et al.: Analysis, design and implementation of a static conductance-based MPPT method. IEEE Trans. Power Electron (2018, in Press). https://doi.org/10.1109/tpel.2018.2835814

  31. Texas Instruments: TMS320x2833x, Analog-to-Digital Converter (ADC) Module (2007)

    Google Scholar 

  32. Texas Instruments: TMS320x2833x, 2823x system control and interrupts (2007)

    Google Scholar 

  33. Texas Instruments: TMS320x2833x, 2801x, 2804x Enhanced Capture (eCAP) Module (2007)

    Google Scholar 

  34. Hua, C., Lin, J., Shen, C.: Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Trans. Ind. Electron. 45(1), 99–107 (1998)

    Article  Google Scholar 

  35. Youssef, A., Telbany, M.E., Zekry, A.: Reconfigurable generic FPGA implementation of fuzzy logic controller for MPPT of PV systems. Renew. Sustain. Energy Rev. 82, 1313–1319 (2018)

    Article  Google Scholar 

  36. Patel, S., Shireen, W.: Fast converging digital MPPT control for photovoltaic (PV) applications. In: Proceedings of IEEE Power and Energy Society General Meeting, Detroit, pp. 1–6 (2011)

    Google Scholar 

  37. Safari, A., Mekhilef, S.: Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron. 58(4), 1154–1161 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research is being developed with the support of the Departamento Nacional de Ciencia, Tecnología e Innovación COLCIENCIAS under contract CT 018-2016. The results were obtained with assistance of students of the Research Hotbed on Power Electronic Conversion (SICEP), Grupo D+TEC, Universidad de Ibagué.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo Lopez-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopez-Santos, O., Merchán-Riveros, M., Garcia, G. (2018). Event-Triggered Digital Implementation of MPPT for Integration of PV Generators in DC Buses of Microgrids. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics