Two-Dimensional Materials

  • Yu-Chuan Lin
Part of the Springer Theses book series (Springer Theses)


Size effect can dictate the properties of the materials. At the nanoscale, changing the number of atoms and molecules forming the materials leads to qualitative changes in physical and chemical properties because the length of interaction from one atom (molecule) to another is approaching to the size of the entire materials. One well-known example of size-dependent phenomena is the quantum confinement effect in ultrasmall semiconducting materials [1]. The term “nanomaterial” is used to describe the materials that have at least one of their dimension in the nanometer scale. Prior to the 1980s, nanoscale materials and technology was only conceptual (i.e., the lecture “There is plenty of room at the bottom” by Richard Feynman in 1959 and the term “nanotechnology” proposed by Norio Taniguchi in 1974) [2, 3] because manipulating atoms and molecules of the materials precisely and achieving high-resolution images in the small scale were difficult at the time. Besides experimental challenges, it was commonly acceptable that a material in such scale may not be stable in room temperature due to large atomic displacement caused by thermal fluctuation. Even Feynman himself also claimed in his lecture that glass and plastic are better candidates than metal and crystals for machines and electronics in the small scale because the later ones will separate into domains to make their lattice structure stronger [2].


  1. 1.
    Takagahara, T., Takeda, K.: Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B. 46, 15578–15581 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    Feynman, R.P.: There’s plenty of room at the bottom [data storage]. J. Microelectromech. Syst. 1, 60–66 (1992)CrossRefGoogle Scholar
  3. 3.
    Taniguchi, N.: Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann. Manuf. Technol. 32, 573–582 (1983)CrossRefGoogle Scholar
  4. 4.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy–From birth to adolescence. Rev. Mod. Phys. 59, 615–625 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature. 318, 162–163 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature. 363, 603–605 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933–937 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Small, J.P., Pontius, W.V., Kim, P.: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics. 8, 899–907 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Splendiani, A., et al.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Eda, G., Maier, S.A.: Two-dimensional crystals: managing light for optoelectronics. ACS Nano. 7, 5660–5665 (2013)CrossRefGoogle Scholar
  15. 15.
    Bhimanapati, G.R., et al.: Recent advances in two-dimensional materials beyond graphene. ACS Nano. 9, 11509–11539 (2015)CrossRefGoogle Scholar
  16. 16.
    Ashton, M., Paul, J., Sinnott, S.B., Hennig, R.G.: Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118, 106101 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Revard, B.C., Tipton, W.W., Yesypenko, A., Hennig, R.G.: Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials. Phys. Rev. B. 93, 054117 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Oshima, C., Nagashima, A.: Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter. 9, 1–20 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Katsnelson, M.I.: Graphene: carbon in two dimensions. Mater. Today. 10, 20–27 (2007)CrossRefGoogle Scholar
  21. 21.
    Wang, L., et al.: One-dimensional electrical contact to a two-dimensional material. Science. 342, 614–617 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    van Wees, B.J., et al.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Yazyev, O.V., Kis, A.: MoS2 and semiconductors in the flatland. Mater. Today. 18, 20–30 (2015)CrossRefGoogle Scholar
  25. 25.
    Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Choi, W., et al.: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today. 20, 116–130 (2017)CrossRefGoogle Scholar
  27. 27.
    Kroemer, H.: Theory of a wide-gap emitter for transistors. Proc. IRE. 45, 1535–1537 (1957)CrossRefGoogle Scholar
  28. 28.
    Kroemer, H.: Heterostructure bipolar transistors and integrated circuits. Proc. IEEE. 70, 13–25 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    Sze, S.M., Kwok, K.N.: Physics of Semiconductor Devices. Wiley, New York (2006)CrossRefGoogle Scholar
  30. 30.
    Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature. 499, 419–425 (2013)CrossRefGoogle Scholar
  31. 31.
    Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, H., et al.: Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale. 6, 12250–12272 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Akinwande, D., Petrone, N., Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Das, S., Robinson, J.A., Dubey, M., Terrones, H., Terrones, M.: Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Bonaccorso, F., et al.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 347, 1246501 (2015)CrossRefGoogle Scholar
  36. 36.
    Lotsch, B.V.: Vertical 2D Heterostructures. Annu. Rev. Mater. Res. 45, 85–109 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Zhang, K., Lin, Y.-C., Robinson, J.A.: Semiconductors and Semimetals. 95, 189–219 (2016)CrossRefGoogle Scholar
  38. 38.
    Koma, A.: Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth. 201–202, 236–241 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    Schlom, D.G., Chen, L.-Q., Pan, X., Schmehl, A., Zurbuchen, M.A.: A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429–2454 (2008)CrossRefGoogle Scholar
  40. 40.
    Lee, G.-H., et al.: Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Weitz, R.T., Yacoby, A.N.: Graphene rests easy. Nat. Nanotechnol. 5, 699–700 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Yankowitz, M., et al.: Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)CrossRefGoogle Scholar
  43. 43.
    Britnell, L., et al.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 335, 947–950 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Lim, H., Yoon, S.I., Kim, G., Jang, A.-R., Shin, H.S.: Stacking of two-dimensional materials in lateral and vertical directions. Chem. Mater. 26, 4891–4903 (2014)CrossRefGoogle Scholar
  45. 45.
    Georgiou, T., et al.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)Google Scholar
  46. 46.
    Withers, F., et al.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Withers, F., et al.: WSe2 light-emitting Tunneling transistors with enhanced brightness at room temperature. Nano Lett. 15, 8223–8228 (2015)Google Scholar
  48. 48.
    Terrones, H., López-Urías, F., Terrones, M.: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Lv, R., et al.: Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015)CrossRefGoogle Scholar
  50. 50.
    Fang, H., et al.: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. U. S. A. 111, 6198–6202 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Chiu, M.-H., et al.: Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano. 8, 9649–9656 (2014)Google Scholar
  52. 52.
    Rivera, P., et al.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015)Google Scholar
  53. 53.
    Haigh, S.J., et al.: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    Robinson, J.A.: Growing vertical in the flatland. ACS Nano. 10, 42–45 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu-Chuan Lin
    • 1
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations