Skip to main content

Nonlinear Analysis of Human Ankle Dynamics

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 65))

Abstract

In this paper finite-time Lyapunov exponents were estimated in order to quantify the local dynamic stability, based on the experimental time series of the flexion-extension and inversion-eversion angles of ankle joints, obtained from a group of five subjects with normal left ankles and right ankles suffering by repeated sprains with residual laxities walking over-ground and on plane and inclined treadmill with different speeds and inclinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ottaviano, E., Ceccarelli. M., et al.: An experimental evaluation of human walking. In: 3rd International Congress Design and Modelling of Mechanical Systems, CMSM (2009)

    Google Scholar 

  2. Tarnita, D., et al.: Experimental characterization of human walking on stairs applied to humanoid dynamics. In: Advances in Robot Design and Intelligent Control, pp. 293–301. Springer (2016)

    Google Scholar 

  3. Berceanu, C., et al.: About an experimental approach used to determine the kinematics of the human finger. J. Solid State Phenom. 166–167, 45–50 (2010)

    Article  Google Scholar 

  4. Ottaviano, E., et al.: An application of CaTraSys, a cable-based parallel measuring system for an experimental characterization of human walking. Robotica 28(1), 119–133 (2010)

    Article  Google Scholar 

  5. Tarnita, D., Marghitu, D.: Nonlinear dynamics of normal and osteoarthritic human knee. In: Proceedings of the Romanian Academy 18(4), pp. 353–360 (2017)

    Google Scholar 

  6. Mândru, D., Rusu, C., Teuţan, E.: Robotic systems for rehabilitation. In: 11th International Research/Expert Conference “Trends in the Development of Machinery and Associated Technology”, TMT 2007, Hammamet, Tunisia, pp. 1495–1498 (2007)

    Google Scholar 

  7. Tarnita, D., et al.: Contributions on the dynamic simulation of the virtual model of the human knee joint. Materialwissenschaft und Werkstofftechnik Mater. Sci. Eng. Technol. 40(1–2), 73–81 (2009). Special Edition Biomaterials, Willey-Vch.

    MathSciNet  Google Scholar 

  8. Osuka, K., Kirihara, K.: Analysis and experiments of passive walking robot QUARTET II. In: IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  9. Geonea, I., Tarnita, D.: Design and evaluation of a new exoskeleton for gait rehabilitation. Mech. Sci. 8(2), 307–322 (2017)

    Article  Google Scholar 

  10. Carbone, G., Ceccarelli, M.: A low-cost easy-operation hexapod walking machine. Int. J. Adv. Robot. Syst. 5(2), 21 (2008)

    Article  Google Scholar 

  11. Pisla, D., Plitea, N., Vaida, C.: Kinematic modeling and workspace generation for a new parallel robot used in minimally invasive surgery. In: Advances in Robot Kinematics: Analysis and Design, pp. 459–468 (2008)

    Chapter  Google Scholar 

  12. Vaida, C., Plitea, N., Pisla, D., Gherman, B.: Orientation module for surgical instruments-a systematical approach. Meccanica 48, 145–158 (2013)

    Article  Google Scholar 

  13. Dumitru, N., et al.: Dynamic analysis of an exoskeleton new ankle joint mechanism. In: New Trends in Mechanism and Machine Science, vol. 24, pp. 709–717. Springer (2015)

    Google Scholar 

  14. Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: Proceedings of the IEEE International Conference on Robotics and Automation (1996)

    Google Scholar 

  15. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and Chaos. Int. J. Robot. Res. 7, 1282–1301 (1998)

    Article  Google Scholar 

  16. Nakamura, Y., Sekiguchi, A.: The chaotic mobile robot. IEEE Trans. Robot. Autom. 17, 898–904 (2001)

    Article  Google Scholar 

  17. Nehmzow, U.: Scientific Methods in Mobile Robotics: Quantitative Analysis of Agent Behavior. Springer (2006)

    Google Scholar 

  18. Tarnita, D.: Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 57(2), 373–382 (2016)

    Google Scholar 

  19. Tarnita, D., et al.: Application of nonlinear dynamics to gait analysis on plane & inclined treadmill. In: New Trends Medical and Service Robots, vol. 39, pp. 59–73. Springer (2016)

    Google Scholar 

  20. Tarnită, D., et al.: Numerical simulations and experimental human gait analysis using wearable sensors. In: New Trends in Medical and Service Robots, MESROB 2016. Mechanism and Machine Science, vol. 48, pp. 289–304. Springer, Cham (2018)

    Chapter  Google Scholar 

  21. Takens, F.: Detecting strange attractors in fluid turbulence. In: Dynamical System Turbulence, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  22. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  Google Scholar 

  23. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  24. Dingwell, J.B., et al.: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. Trans. ASME 123, 27–32 (2001)

    Article  Google Scholar 

  25. Rosenstein, M.T., Collins, I.J., Deluca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)

    Article  MathSciNet  Google Scholar 

  26. England, S.A., Granata, K.P.: The influence of gait speed on local dynamic stability of walking. Gait Posture 25(2), 172–178 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Tarnita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarnita, D., Georgescu, M., Geonea, I., Petcu, A., Tarnita, DN. (2019). Nonlinear Analysis of Human Ankle Dynamics. In: Carbone, G., Ceccarelli, M., Pisla, D. (eds) New Trends in Medical and Service Robotics. Mechanisms and Machine Science, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-030-00329-6_27

Download citation

Publish with us

Policies and ethics