Skip to main content

Exoskeletons as Mechatronic Design Example

Part of the Mechanisms and Machine Science book series (Mechan. Machine Science,volume 65)

Abstract

Exoskeletons are a perfect example of a mechatronics product. They illustrate the close integration and interdependence of mechanical design, drive train, sensors, control strategy and user interface. Recent developments of our lab will be discussed in detail. Application examples include paraplegics, amputees, muscular dystrophy patients. The motivations of the users exoskeletons are as diverse as sporting challenge, life quality improvement for daily living, rehabilitation and social integration. Links to Cognitive Neurosciences will also be briefly discussed.

Keywords

  • Exoskeletons
  • Mechatronics
  • Assistive device
  • Haptics
  • Human-machine interface

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00329-6_13
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00329-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Olivier, J.: Development of Walk Assistive Orthoses for Elderly. PhD thesis No 6947, EPFL Lausanne (2016)

    Google Scholar 

  2. Shokur, S.: Virtual reality based Brain-Machine-Interface for Sensori-Motor and Social experiments with Primates (2013)

    Google Scholar 

  3. Young, A., Ferris, D.: State-of-the-art and future directions for robotic lower limb Exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 99, 1–1 (2016)

    Google Scholar 

  4. Vouga, T., Baud, R., Fasola, J., Bouri, M., Bleuler, H.: TWIICE - A lightweight lower-limb exoskeleton for complete paraplegics. In 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1639–1645 (2017)

    Google Scholar 

  5. Tucker, M.R., et al.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. NeuroEng. Rehabil. 12(1), 1 (2015)

    CrossRef  Google Scholar 

  6. Vouga, T., et al.: EXiO - a brain-controlled Lower Limb Exoskeleton for Rhesus Macaques. IEEE Trans. Neural Syst. Rehabil. Eng. 25(2), 131–141 (2017)

    CrossRef  Google Scholar 

  7. Ortlieb, A., Olivier, J., Bouri, M., Bleuler, H., Kuntzer, T.: From gait measurements to design of assistive orthoses for people with neuromuscular diseases. In 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 368–373 (2015)

    Google Scholar 

  8. Ortlieb, A., Bouri, M., Bleuler, H.: AUTONOMYO: Design Challenges of Lower Limb Assistive Device for Elderly People, Multiple Sclerosis and Neuromuscular Diseases. Wearable Robotics: Challenges and Trends, pp. 439–443. Springer, Cham (2017)

    CrossRef  Google Scholar 

  9. Giuliani, C.A., Smith, J.L.: Stepping behaviors in chronic spinal cats with one hindlimb deafferented. J. Neurosci. 7, 2537–2546 (1987)

    Google Scholar 

  10. Shokur, S., et al.: Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci. Rep. 6, 32293 (2016)

    CrossRef  Google Scholar 

  11. Donati, A.R., et al.: Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci. Rep. 6, 30383 (2016)

    CrossRef  Google Scholar 

  12. Iriki, A., Tanaka, M., Iwamura, Y.: Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7(14), 2325–2330 (1996)

    CrossRef  Google Scholar 

  13. Fuentes, C.T., Pazzaglia, M., Longo, M.R., Scivoletto, G., Haggard, P.: Body image distortions following spinal cord injury. J. Neurol. Neurosurg. Psychiatry 82, 201–207 (2013)

    CrossRef  Google Scholar 

  14. Canzoneri, E., Marzolla, M., Amoresano, A., Verni, G., Serino, A.: Amputation and prosthesis implantation shape body and peripersonal space representations. Sci. Rep. 3, 1–8 (2013)

    CrossRef  Google Scholar 

  15. Lenggenhager, B., Pazzaglia, M., Scivoletto, G., Molinari, M., Aglioti, S.M.: The sense of the body in individuals with spinal cord injury. PLoS ONE 7, e50757 (2012)

    CrossRef  Google Scholar 

  16. Maravita, A., Husain, M., Clarke, K., Driver, J.: Reaching with a tool extends visual–tactile interactions into far space: Evidence from cross-modal extinction. Neuropsychologia 39(6), 580–585 (2001)

    CrossRef  Google Scholar 

  17. Olivier, J., Ortlieb, A., Bouri, M., Bleuler, H.: Mechanisms for actuated assistive hip orthoses. J. Robot. Auton. Syst. Special issue ``Wearable Robotics”, Elsevier 73, 59–67 (2014). https://doi.org/10.1016/j.robot.2014.10.002

    CrossRef  Google Scholar 

  18. Riener, R.: The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. Neuroeng. Rehabil. 13, 49 (2016)

    CrossRef  Google Scholar 

  19. He, Y., Eguren, D., Azorín, J.M., Grossman, R.G., Luu, T.P., Contreras-Vidal, J.-L.: Brain-machine interfaces for controlling lower-limb powered robotic systems. J. Neural Eng. 15(8), 021004 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ASRIMM (Association Suisse Romande Intervenant contre les Maladies neuro-Musculaires), FSRMM (Fondation Suisse de Recherche sur les Maladies Musculaires), Fischer Connectors SA, Sonceboz SA, Lions Club Vevey for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Bleuler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bleuler, H. et al. (2019). Exoskeletons as Mechatronic Design Example. In: Carbone, G., Ceccarelli, M., Pisla, D. (eds) New Trends in Medical and Service Robotics. Mechanisms and Machine Science, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-030-00329-6_13

Download citation