Skip to main content

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 15))

  • 625 Accesses

Abstract

The arbitrarily varying channel (AVC) was introduced under a different name by Blackwell, Breiman, and Thomasian [1] and considerable progress has been made in the study of these channels. It is probably one of the most interesting models in information theory because of the following phenomena which are not present in simpler models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Blackwell, L. Breiman, A.J. Thomasian, The capacities of certain channel classes under random coding. Ann. Math. Stat. 31, 558–567 (1960)

    Article  Google Scholar 

  2. R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 33, 159–175 (1978)

    Google Scholar 

  3. J. Kiefer, J. Wolfowitz, Channels with arbitrarily varying channel probability functions. Inf. Control 5, 44–54 (1962)

    Article  MathSciNet  Google Scholar 

  4. R. Ericson, Exponential error bounds for random codes in the arbitrarily varying channel. IEEE Trans. Inf. Theory 31, 42–48 (1985)

    Article  MathSciNet  Google Scholar 

  5. I. Csiszár, P. Narayan, The capacity of arbitrarily channels revisited, positivity, constraints. IEEE Trans. Inf. Theory 34, 181–193 (1988)

    Google Scholar 

  6. R. Ahlswede, J. Wolfowitz, The capacity of a channel with arbitrarily varying channel probability functions and binary outputalphabet. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 15, 186–194 (1970)

    Google Scholar 

  7. R. Ahlswede, N. Cai, The AVC with noiseless feedback and maximal error probability, a capacity formula with a trichotomy, in Numbers, Information and Complexity, Special volume in honour of R. Ahlswede on occasion of his 60th birthday, ed. by I. Althöfer, N. Cai, G. Dueck, L.H. Khachatrian, M. Pinsker, A. Sárközy, I. Wegener, Z. Zhang (Kluwer Academic Publishers, Boston, 2000), pp. 151–176

    Google Scholar 

  8. I. Csiszár, J. Körner, On the capacity of the arbitrarily varying channel for maximum probability of error. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 57, 87–101 (1981)

    Google Scholar 

  9. R. Ahlswede, A note on the existence of the weak capacity for channels with arbitrarily varying probability functions and its relation to Shannon’s zero error capacity. Ann. Math. Stat. 41, 1027–1033 (1970)

    Google Scholar 

  10. C.E. Shannon, The zero error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  11. R. Ahlswede, Channels with arbitrarily varying channel probability functions in the presence of noiseless feedback. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 25, 239–252 (1973)

    Google Scholar 

  12. R. Ahlswede, N. Cai, Two proofs of Pinsker’s conjecture concerning arbitrarily varying channels. IEEE Trans. Inf. Theory 37, 1647–1649 (1991)

    Article  MathSciNet  Google Scholar 

  13. V.M. Blinovsky, O. Narayan, M.S. Pinsker, Capacity of the arbitrarily varying channel under list decoding. Probl. Inf. Transm. 31, 99–113 (1995), translated from Problemy Peredačii Informacii 31(2), 3–19 (1995)

    Google Scholar 

  14. B.L. Hughes, The smallest list for arbitrarily varying channel. IEEE Trans. Inf. Theory 43(3), 803–815 (1997)

    Google Scholar 

  15. R. Ahlswede, Channel capacities for list codes. J. Appl. Probab. 10, 824–836 (1973)

    Article  MathSciNet  Google Scholar 

  16. R. Ahlswede, The maximal error capacity of arbitrarily varying channels for constant list size. IEEE Trans. Inf. Theory 39, 1416–1417 (1993)

    Article  MathSciNet  Google Scholar 

  17. P. Elias, Zero error capacity under list decoding. IEEE Trans. Inf. Theory 34, 1070–1074 (1988)

    Article  MathSciNet  Google Scholar 

  18. R. Ahlswede, Arbitrarily varying channels with states sequence known to the sender. IEEE Trans. Inf. Theory 32, 621–629 (1986)

    Article  MathSciNet  Google Scholar 

  19. R. Ahlswede, N. Cai, Correlated sources help the transmission over AVC. IEEE Trans. Inf. Theory 43(4), 1254–1255 (1997)

    Google Scholar 

  20. R. Ahlswede, The capacity of a channel with arbitrarily varying additive Gaussian channel probability functions, in Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (1971), pp. 13–21

    Google Scholar 

  21. I. Csiszár, P. Narayan, Capacity of the Gaussian arbitrarily varying channel. IEEE Trans. Inf. Theory 37, 18–26 (1991)

    Article  MathSciNet  Google Scholar 

  22. J.-H. Jahn, Coding of arbitrarily varying multiuser channels. IEEE Trans. Inf. Theory 27, 212–226 (1981)

    Article  MathSciNet  Google Scholar 

  23. J.A. Gubner, On the deterministic–code capacity of the multiple–access arbitrarily varying channel. IEEE Trans. Inf. Theory 36, 262–275 (1990)

    Article  MathSciNet  Google Scholar 

  24. R. Ahlswede, N. Cai, Arbitrarily varying multiple–access channels, part I, Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45(2), 742–749 (1999)

    Google Scholar 

  25. R. Ahlswede, N. Cai, Arbitrarily varying multiple–access channels, part II, correlated sender’s side information, correlated messages and ambiguous transmission. IEEE Trans. Inf. Theory 45(2), 749–756 (1999)

    Google Scholar 

  26. I. Csiszár, Arbitrarily varying channels with general alphabets and states. IEEE Trans. Inf. Theory 38, 1725–1742 (1992)

    Article  MathSciNet  Google Scholar 

  27. R. Ahlswede, Coloring hypergraphs, a new approach to multi–user source coding. J. Comb. Inf. Syst. Sci. I 4, 76–115 (1979) and II 5, 220–268 (1980)

    Google Scholar 

  28. I. Csiszár, P. Narayan, Capacity and decoding rules for arbitrarily varying channels. IEEE Trans. Inf. Theory 35, 752–769 (1989)

    Google Scholar 

  29. T.M. Cover, A. ElGamal, M. Salehi, Multiple–access channel with arbitrarily correlated sources. IEEE Trans. Inf. Theory IT–26, 648–659 (1980)

    Article  MathSciNet  Google Scholar 

  30. M. Hizlan, B.L. Hughes, On the optimal of direct sequence for arbitrary interference rejection. IEEE Trans. Commun. 39, 1193–1196 (1991)

    Article  Google Scholar 

  31. D. Blackwell, L. Breiman, A.J. Thomasian, The capacity of a class of channels. Ann. Math. Stat. 30, 1229–1241 (1959)

    Article  MathSciNet  Google Scholar 

  32. I. Csiszár, P. Narayan, Arbitrary varying channels with constrained input and states. IEEE Trans. Inf. Theory 34, 27–44 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Ahlswede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahlswede, R. (2019). Preliminaries. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Probabilistic Methods and Distributed Information. Foundations in Signal Processing, Communications and Networking, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-00312-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00312-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00310-4

  • Online ISBN: 978-3-030-00312-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics