Skip to main content

Model-Based Fall Detection and Fall Prevention for Humanoid Robots

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11175)

Abstract

Fall detection and fall prevention are crucial for humanoid robots when operating in natural environments. Early fall detection is important to have sufficient time for making a stabilizing movement. Existing approaches mostly analyze the sensor data to detect an ongoing fall. In this paper, we use a physical model of the robot to detect whether the measured sensor data indicates a fall in the near future. A trajectory for the foot is calculated to compensate the rotational velocity and acceleration of the fall. In an evaluation with the humanoid robot NAO, we demonstrate that falls can be detected significantly earlier than with traditional sensor classification with little false-positive detections during staggering. Falls due to small to medium impacts can be prevented.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00308-1_26
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00308-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Abeyruwan, S.W., Sarkar, D., Sikder, F., Visser, U.: Semi-automatic extraction of training examples from sensor readings for fall detection and posture monitoring. IEEE Sens. J. 16(13), 5406–5415 (2016)

    CrossRef  Google Scholar 

  2. Adiwahono, A.H., Chew, C.M., Huang, W., Dau, V.H.: Humanoid robot push recovery through walking phase modification. In: 2010 IEEE Conference on Robotics Automation and Mechatronics (RAM), pp. 569–574. IEEE (2010)

    Google Scholar 

  3. Altmann, S.L.: Rotations, Quaternions, and Double Groups (1986)

    Google Scholar 

  4. Böckmann, A., Laue, T.: Kick motions for the NAO robot using dynamic movement primitives. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 33–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_3

    CrossRef  Google Scholar 

  5. Featherstone, R.: Inverse Dynamics. In: Featherstone, R. (ed.) Rigid Body Dynamics Algorithms. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  6. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    CrossRef  Google Scholar 

  7. Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup standard platform league humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 102–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32060-6_9

    CrossRef  Google Scholar 

  8. Höhn, O., Gačnik, J., Gerth, W.: Detection and classification of posture instabilities of bipedal robots. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds.) Climbing and Walking Robots, pp. 409–416. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-26415-9_49

    CrossRef  Google Scholar 

  9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A realtime pattern generator for biped walking. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), Washington, D.C., USA, pp. 31–37 (2002)

    Google Scholar 

  10. Kalyanakrishnan, S., Goswami, A.: Learning to predict humanoid fall. Int. J. Humanoid Robot. 8(02), 245–273 (2011)

    CrossRef  Google Scholar 

  11. Kiemel, S.: Balance maintenance of a humanoid robot using the hip-ankle strategy. Ph.D. thesis, TU Delft, Delft University of Technology (2012)

    Google Scholar 

  12. Lee, S.H., Goswami, A.: Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3157–3162. IEEE (2010)

    Google Scholar 

  13. Mao, W., Kim, J.J., Lee, J.J.: Continuous steps toward humanoid push recovery. In: IEEE International Conference on Automation and Logistics, ICAL 2009, pp. 7–12. IEEE (2009)

    Google Scholar 

  14. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207. IEEE (2006)

    Google Scholar 

  15. Renner, R., Behnke, S.: Instability detection and fall avoidance for a humanoid using attitude sensors and reflexes. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2967–2973. IEEE (2006)

    Google Scholar 

  16. Röfer, T., et al.: B-human team report and code release 2016 (2016). https://github.com/bhuman/BHumanCodeRelease

  17. Aldebaran Robotics: NAO Documentation (2016). http://doc.aldebaran.com. Accessed 12 Aug 2018

  18. Ruiz-del Solar, J., Moya, J., Parra-Tsunekawa, I.: Fall detection and management in biped humanoid robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3323–3328. IEEE (2010)

    Google Scholar 

  19. Stephens, B.: Push recovery control for force-controlled humanoid robots. Ph.D. thesis, Carnegie Mellon University Pittsburgh, Pennsylvania USA (2011)

    Google Scholar 

  20. Tay, J., Chen, I.-M., Veloso, M.: Fall prediction for new sequences of motions. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 849–864. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23778-7_56

    CrossRef  Google Scholar 

  21. Vukobratović, M., Borovac, B.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Robot. 1(01), 157–173 (2004)

    CrossRef  Google Scholar 

  22. Wenk, F., Röfer, T.: Online generated kick motions for the NAO balanced using inverse dynamics. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 25–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9_3

    CrossRef  Google Scholar 

  23. Wight, D.L., Kubica, E.G., Wang, D.W.: Introduction of the foot placement estimator: a dynamic measure of balance for bipedal robotics. J. Comput. Nonlinear Dyn. 3(1), 011009 (2008)

    CrossRef  Google Scholar 

  24. Winter, D.A.: Human balance and posture control during standing and walking. Gait Posture 3(4), 193–214 (1995)

    CrossRef  Google Scholar 

  25. Yi, S.J., Zhang, B.T., Hong, D., Lee, D.D.: Learning full body push recovery control for small humanoid robots. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2047–2052. IEEE (2011)

    Google Scholar 

  26. Yun, S.K., Goswami, A.: Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3943–3950. IEEE (2011)

    Google Scholar 

  27. Zhao, J., Schutz, S., Berns, K.: Biologically motivated push recovery strategies for a 3D bipedal robot walking in complex environments. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1258–1263. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Röfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Muender, T., Röfer, T. (2018). Model-Based Fall Detection and Fall Prevention for Humanoid Robots. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. Lecture Notes in Computer Science(), vol 11175. Springer, Cham. https://doi.org/10.1007/978-3-030-00308-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00308-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00307-4

  • Online ISBN: 978-3-030-00308-1

  • eBook Packages: Computer ScienceComputer Science (R0)