Advertisement

Vision-Based Orientation Detection of Humanoid Soccer Robots

  • Andre Mühlenbrock
  • Tim LaueEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11175)

Abstract

Knowing the positions of the other players on a football pitch is a crucial aspect for playing successfully. However, knowing not only the position but also the orientation of another player provides certain tactical advantages. In this paper, we present a vision-based approach for determining the orientation of humanoid NAO robots over short and medium distances. It is based on the idea of analyzing the alignment of other robots’ foot sides. In a series of experiments, we demonstrate that the approach is able to perform robust and precise orientation detection in different scenarios.

Keywords

Orientation Detection Humanoid Soccer Robots Classified Color Images Robot Region RoboCup Standard Platform League 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andrew, A.M.: Another efficient algorithm for convex hulls in two dimensions. Inf. Process. Lett. 9(5), 216–219 (1979)CrossRefGoogle Scholar
  2. 2.
    Fabisch, A., Laue, T., Röfer, T.: Robot recognition and modeling in the RoboCup standard platform league. In: Pagello, E., Zhou, C., Behnke, S., Menegatti, E., Röfer, T., Stone, P. (eds.) Proceedings of the Fifth Workshop on Humanoid Soccer Robots in Conjunction with the 2010 IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA (2010)Google Scholar
  3. 3.
    Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37331-2_42CrossRefGoogle Scholar
  4. 4.
    Hoffmann, J., Jüngel, M., Lötzsch, M.: A vision based system for goal-directed obstacle avoidance. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 418–425. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32256-6_35CrossRefGoogle Scholar
  5. 5.
    Laue, T., Röfer, T., Gillmann, K., Wenk, F., Graf, C., Kastner, T.: B-human 2011 – eliminating game delays. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 25–36. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32060-6_3CrossRefGoogle Scholar
  6. 6.
    Lenser, S., Veloso, M.: Visual sonar: fast obstacle avoidance using monocular vision. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, USA, vol. 1, pp. 886–891 (2003)Google Scholar
  7. 7.
    Loncomilla, P., Ruiz-del-Solar, J.: Gaze direction determination of opponents and teammates in robot soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 230–242. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780519_21CrossRefGoogle Scholar
  8. 8.
    Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 149–161. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32060-6_13CrossRefGoogle Scholar
  9. 9.
    Röfer, T., et ail.: B-Human team report and code release 2016 (2016). https://github.com/bhuman/BHumanCodeRelease/blob/master/CodeRelease2016.pdf
  10. 10.
    Tilgner, R., et al.: Sparse feature learning for visual robot angle estimation (2013). http://www.tzi.de/spl/pub/Website/Challenges2013/HTWK.pdf
  11. 11.
    Wilking, D., Röfer, T.: Realtime object recognition using decision tree learning. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 556–563. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32256-6_52CrossRefGoogle Scholar
  12. 12.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-vision: the shared vision system for the RoboCup small size league. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11876-0_37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universität Bremen, Fachbereich 3 – Mathematik und InformatikBremenGermany

Personalised recommendations