Advertisement

Other Buds in Membrane Computing

  • Miguel A. Gutiérrez-NaranjoEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11270)

Abstract

It is well-known the huge Mario’s contribution to the development of Membrane Computing. Many researchers may relate his name to the theory of complexity classes in P systems, the research of frontiers of the tractability or the application of Membrane Computing to model real-life situations as the Quorum Sensing System in Vibrio fischeri or the Bearded Vulture ecosystem. Beyond these research areas, in the last years Mario has presented many new research lines which can be considered as buds in the robust Membrane Computing tree. Many of them were the origin of new research branches, but some others are still waiting to be developed. This paper revisits some of these buds.

References

  1. 1.
    Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu et al. [16], pp. 215–252.  https://doi.org/10.1007/3-540-29937-8_8
  2. 2.
    Ardelean, I.I., Ceterchi, R., Tomescu, A.I.: Sorting with P systems: a biological perspective. Rom. J. Inf. Sci. Technol. 11(3), 243–252 (2008). http://www.imt.ro/romjist/Volum11/Number11_3/pdf/03-Ardelean.pdf
  3. 3.
    Batcher, K.E.: Sorting networks and their applications. In: American Federation of Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring Joint Computer Conference, Atlantic City, NJ, USA, vol. 32, pp. 307–314. Thomson Book Company, Washington D.C. http://doi.acm.org/10.1145/1468075.1468121
  4. 4.
    Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czirok, A., Vicsek, T.: Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368(6466), 46–49 (1994). https://www.nature.com/articles/368046a0CrossRefGoogle Scholar
  5. 5.
    Cabarle, F.G.C., Adorna, H., Martínez, M.A.: A spiking neural P system simulator based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28024-5_8CrossRefGoogle Scholar
  6. 6.
    Cantor, G.: Über unendliche, lineare punktmannichfaltigkeiten v. Math. Ann. 21, 545–591 (1883).  https://doi.org/10.1007/BF01446819MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cardona, M., Colomer, M., Conde, J., Miret, J., Miró, J., Zaragoza, A.: Markov chains: computing limit existence and approximations with DNA. Biosystems 81(3), 261–266 (2005). http://www.sciencedirect.com/science/article/pii/S0303264705000663CrossRefGoogle Scholar
  8. 8.
    Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J.: Characterizing the aperiodicity of irreducible Markov chains by using P systems. In: Gutiérrez-Escudero et al. [29], pp. 81–95, https://idus.us.es/xmlui/handle/11441/38857
  9. 9.
    Cardona, M., Colomer, M.A., Pérez-Jiménez, M.J., Sanuy, D., Margalida, A.: Modeling ecosystems using P systems: the bearded vulture, a case study. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2008. LNCS, vol. 5391, pp. 137–156. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-95885-7_11CrossRefGoogle Scholar
  10. 10.
    Cardona, M., Colomer, M.Á., Pérez-Jiménez, M.J., Zaragoza, A.: Handling Markov chains with membrane computing. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Fourth Brainstorming Week on Membrane Computing, vol. I, pp. 99–111. Fénix Editora, Sevilla (2006). https://idus.us.es/xmlui/handle/11441/36996Google Scholar
  11. 11.
    Ceterchi, R., Pérez-Jiménez, M.J.: On two-dimensional mesh networks and their simulation with P systems. In: Mauri et al. [49], pp. 259–277.  https://doi.org/10.1007/978-3-540-31837-8_15CrossRefGoogle Scholar
  12. 12.
    Ceterchi, R., Pérez-Jiménez, M.J.: A perfect shuffle algorithm for reduction processes and its simulation with P systems. In: International Conference on Computers and Communications, pp. 92–97 (2004). http://www.cs.us.es/~marper/investigacion/oradea.pdf
  13. 13.
    Ceterchi, R., Pérez-Jiménez, M.J.: Simulating shuffle-exchange networks with P systems. In: Păun et al. [55], pp. 117–129. https://idus.us.es/xmlui/handle/11441/34641
  14. 14.
    Ceterchi, R., Pérez-Jiménez, M.J., Tomescu, A.I.: Simulating the bitonic sort using P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 172–192. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77312-2_11CrossRefGoogle Scholar
  15. 15.
    Ceterchi, R., Pérez-Jiménez, M.J., Tomescu, A.I.: Sorting omega networks simulated with P systems: optimal data layouts. In: Díaz-Pernil et al. [20], pp. 79–92. https://idus.us.es/xmlui/bitstream/handle/11441/68018/dl-ps-4a.pdf
  16. 16.
    Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.): Applications of Membrane Computing. Natural Computing. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29937-8Google Scholar
  17. 17.
    Clar, S., Drossel, B., Schwabl, F.: Forest fires and other examples of self-organized criticality. J. Phys.: Condens. Matter 8(37), 6803 (1996). http://stacks.iop.org/0953-8984/8/i=37/a=004Google Scholar
  18. 18.
    Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Exploring computation trees associated with P systems. In: Mauri et al. [49], pp. 278–286.  https://doi.org/10.1007/978-3-540-31837-8_16CrossRefGoogle Scholar
  19. 19.
    Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Weak metrics on configurations of a P system. In: Păun et al. [55], pp. 139–151. https://idus.us.es/xmlui/handle/11441/34641
  20. 20.
    Díaz-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.): Sixth Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla (2008)Google Scholar
  21. 21.
    Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30550-7_3CrossRefGoogle Scholar
  22. 22.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75(1–4), 263–280 (2007). http://content.iospress.com/articles/fundamenta-informaticae/fi75-1-4-15MathSciNetzbMATHGoogle Scholar
  23. 23.
    Frijters, D., Lindenmayer, A.: A model for the growth and flowering of aster novae-angliae on the basis of table \({<}1, 0{>}\) L-systems. In: Rozenberg, G., Salomaa, A. (eds.) L Systems. LNCS, vol. 15, pp. 24–52. Springer, Heidelberg (1974).  https://doi.org/10.1007/3-540-06867-8_2CrossRefzbMATHGoogle Scholar
  24. 24.
    Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J.: Applications of Membrane Computing in Systems and Synthetic Biology. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03191-0CrossRefGoogle Scholar
  25. 25.
    Georgiou, A., Gheorghe, M.: Generative devices used in graphics. In: Alhazov, A., Martín-Vide, C., Păun, Gh. (eds.) Preproceedings of the Workshop on Membrane Computing. Technical report, vol. 28/03, pp. 266–272. Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2003)Google Scholar
  26. 26.
    Georgiou, A., Gheorghe, M., Bernardini, F.: Membrane-based devices used in computer graphics. In: Ciobanu, G., Păun, Gh., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Natural Computing, pp. 253–281. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29937-8_9
  27. 27.
    Graciani, C., Păun, Gh., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.): Fourth Brainstorming Week on Membrane Computing, vol. II. Fénix Editora, Sevilla (2006)Google Scholar
  28. 28.
    Graciani-Díaz, C., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: A membrane computing model for ballistic depositions. In: Gutiérrez-Naranjo, M.A. et al. (eds.) Fifth Brainstorming Week on Membrane Computing, pp. 179–197. Fénix Editora, Sevilla (2007). https://idus.us.es/xmlui/handle/11441/38583
  29. 29.
    Gutiérrez-Escudero, R., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.): Seventh Brainstorming Week on Membrane Computing, vol. I. Fénix Editora, Sevilla (2009)Google Scholar
  30. 30.
    Gutiérrez-Naranjo, M.A., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Solving the N-queens puzzle with P systems. In: Gutiérrez-Escudero et al. [29], pp. 199–210. https://idus.us.es/xmlui/handle/11441/38865
  31. 31.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Fractals and P systems. In: Graciani et al. [27], pp. 65–86. https://idus.us.es/xmlui/handle/11441/38328
  32. 32.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: A first model for Hebbian learning with spiking neural P systems. In: Díaz-Pernil et al. [20], pp. 211–233. https://idus.us.es/xmlui/handle/11441/38778
  33. 33.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Computing backwards with P systems. In: Gutiérrez-Escudero et al. [29], pp. 211–226. https://idus.us.es/xmlui/handle/11441/38866
  34. 34.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Membrane computing meets artificial intelligence: a case study. In: Martínez del Amor et al. [47], pp. 133–144. https://idus.us.es/xmlui/handle/11441/39004
  35. 35.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Implementing local search with membrane computing. In: Martínez del Amor et al. [48], pp. 159–168. https://idus.us.es/xmlui/handle/11441/39476
  36. 36.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An approach to the degree of parallelism in P systems. In: Graciani-Díaz et al. [27], pp. 87–104. https://idus.us.es/xmlui/handle/11441/38335
  37. 37.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: How to express tumours using membrane systems. Prog. Nat. Sci. 17(4), 449–457 (2007). http://www.tandfonline.com/doi/abs/10.1080/10020070708541022MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gutiérrez–Naranjo, M.A., Pérez–Jiménez, M.J., Riscos–Núñez, A., Romero–Campero, F.J.: On the power of dissolution in P systems with active membranes. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006).  https://doi.org/10.1007/11603047_16CrossRefzbMATHGoogle Scholar
  39. 39.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: Computational efficiency of dissolution rules in membrane systems. Int. J. Comput. Math. 83(7), 593–611 (2006).  https://doi.org/10.1080/00207160601065413MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)Google Scholar
  41. 41.
    Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)Google Scholar
  42. 42.
    Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71(2–3), 279–308 (2006). http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-08
  43. 43.
    Koch, H.v.: Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv för Matematik, Astronomi och Fysik 1, 681–704 (1904)Google Scholar
  44. 44.
    von Koch, H.: Une méthode géometrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Math. 30, 145–174 (1906).  https://doi.org/10.1007/BF02418570MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lindenmayer, A.: Developmental systems without cellular interactions, their languages and grammars. J. Theor. Biol. 30(3), 455–484 (1971)CrossRefGoogle Scholar
  46. 46.
    Macías-Ramos, L.F., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-Cabrera, L.: Unconventional approaches to tackle the P Versus NP problem. In: Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Discrete Mathematics and Computer Science. Memoriam Alexandru Mateescu (1952–2005), pp. 223–237. The Publishing House of the Romanian Academy (2014)Google Scholar
  47. 47.
    Martínez del Amor, M.A., Păun, Gh., Pérez Hurtado, I., Riscos-Núñez, A. (eds.): Eighth Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla (2010)Google Scholar
  48. 48.
    Martínez del Amor, M.A., Păun, Gh., Pérez Hurtado, I., Romero Campero, F.J., Valencia-Cabrera, L. (eds.): Ninth Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla (2011)Google Scholar
  49. 49.
    Mauri, G., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.): WMC 2004. LNCS, vol. 3365. Springer, Heidelberg (2005).  https://doi.org/10.1007/b106721Google Scholar
  50. 50.
    Peng, H., Zhang, J., Wang, J., Wang, T., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Membrane clustering: a novel clustering algorithm under membrane computing. In: Macías-Ramos, L.F. et al. (eds.) Twelfth Brainstorming Week on Membrane Computing, pp. 311–327. Fénix Editora, Sevilla (2014). https://idus.us.es/xmlui/handle/11441/33577
  51. 51.
    Pérez–Jiménez, M.J.: A computational complexity theory in membrane computing. In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11467-0_10CrossRefGoogle Scholar
  52. 52.
    Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity - membrane division, membrane creation. In: Păun et al. [57], pp. 302–336Google Scholar
  53. 53.
    Pérez-Jiménez, M.J., Sancho-Caparrini, F.: A formalization of transition P systems. Fundam. Inform. 49(1–3), 261–272 (2002). http://content.iospress.com/articles/fundamenta-informaticae/fi49-1-3-20MathSciNetzbMATHGoogle Scholar
  54. 54.
    Păun, Gh., Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P systems and R systems. In: Martínez del Amor et al. [48], pp. 305–316. https://idus.us.es/xmlui/handle/11441/39575
  55. 55.
    Păun, Gh., Riscos-Núñez, A., Romero-Jiménez, Á., Sancho-Caparrini, F. (eds.): Second Brainstorming Week on Membrane Computing. Fénix Editora, Sevilla (2004)Google Scholar
  56. 56.
    Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Bridging membrane and reaction systems – Further results and research topics. In: Valencia-Cabrera, L., et al. (eds.) Eleventh Brainstorming Week on Membrane Computing, pp. 243–256. Fénix Editora, Sevilla, February 2013. https://idus.us.es/xmlui/handle/11441/33819
  57. 57.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)Google Scholar
  58. 58.
    Rivero-Gil, E., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Graphics and P systems: experiments with JPLANT. In: Díaz-Pernil et al. [20], pp. 241–253. https://idus.us.es/xmlui/handle/11441/38787
  59. 59.
    Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum sensing system in Vibrio fischeri using P systems. Artif. Life 14(1), 95–109 (2008).  https://doi.org/10.1162/artl.2008.14.1.95CrossRefGoogle Scholar
  60. 60.
    Romero-Jiménez, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: The growth of branching structures with P systems. In: Graciani et al. [27], pp. 253–265. http://www.gcn.us.es/4BWMC/vol2/thegrowth.pdf
  61. 61.
    Jiménez, Á.R., Pérez Jiménez, M.J.: Generation of diophantine sets by computing P systems with external output. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 176–190. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45833-6_15CrossRefzbMATHGoogle Scholar
  62. 62.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)CrossRefGoogle Scholar
  63. 63.
    Sosic, R., Gu, J.: Efficient local search with conflict minimization: a case study of the N-queens problem. IEEE Trans. Knowl. Data Eng. 6(5), 661–668 (1994)CrossRefGoogle Scholar
  64. 64.
    Sutherland, D.: Comments on Vold’s simulation of floc formation. J. Colloid Interface Sci. 22(3), 300–302 (1966). http://www.sciencedirect.com/science/article/pii/0021979766900373CrossRefGoogle Scholar
  65. 65.
    Vold, M.J.: A numerical approach to the problem of sediment volume. J. Colloid Sci. 14(2), 168–174 (1959). http://www.sciencedirect.com/science/article/pii/0095852259900418CrossRefGoogle Scholar
  66. 66.
    Zeng, X., Adorna, H., Martínez-del-Amor, M.Á., Pan, L., Pérez-Jiménez, M.J.: Matrix representation of spiking neural P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 377–391. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-18123-8_29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of SevilleSevilleSpain

Personalised recommendations