Skip to main content

Optimality Program in Segment and String Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

Abstract

Planar graphs are known to allow subexponential algorithms running in time \(2^{O(\sqrt{n})}\) or \(2^{O(\sqrt{n} \log n)}\) for most of the paradigmatic problems, while the brute-force time \(2^{\varTheta (n)}\) is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in \(2^{O(n^{2/3}\log n)}\) by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time \(2^{O(n^{2/3}\log ^{O(1)}n)}\) on string graphs while an algorithm running in time \(2^{o(n)}\) for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker lower bound, excluding a \(2^{o(n^{2/3})}\) algorithm (under the ETH). The construction exploits the celebrated Erdős-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set, but not to Min Dominating Set and Min Independent Dominating Set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Full proofs of theorems marked with (\(\star \)) can be found in [6].

References

  1. Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent set and sparse subsets of polygons. CoRR abs/1703.04758 (2017). http://arxiv.org/abs/1703.04758

  2. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of polygons with polylogarithmically many vertices. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 645–656 (2014). https://doi.org/10.1137/1.9781611973402.49

  3. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)

    Article  MathSciNet  Google Scholar 

  4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

    Article  MathSciNet  MATH  Google Scholar 

  5. Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzążewski, P.: Fine-grained complexity of coloring unit disks and balls. In: 33rd International Symposium on Computational Geometry, SoCG 2017, 4–7 July 2017, Brisbane, Australia, pp. 18:1–18:16 (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.18

  6. Bonnet, É., Rzążewski, P.: Optimality program in segment and string graphs. CoRR abs/1712.08907 (2017). http://arxiv.org/abs/1712.08907

  7. Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified o(n) planarity by edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004). http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf

  8. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. Discret. Comput. Geom. 50(3), 771–783 (2013). https://doi.org/10.1007/s00454-013-9538-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 631–638 (2009). https://doi.org/10.1145/1536414.1536500

  10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensional parameters and local treewidth. SIAM J. Discret. Math. 18(3), 501–511 (2004)

    Article  MathSciNet  Google Scholar 

  11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and \({H}\)-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  12. Demaine, E.D., Hajiaghayi, M.T.: Fast algorithms for hard graph problems: bidimensionality, minors, and local treewidth. In: Proceedings of GD 2014, pp. 517–533 (2004)

    Google Scholar 

  13. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)

    Article  Google Scholar 

  14. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica 28(1), 19–36 (2008)

    Article  MathSciNet  Google Scholar 

  15. Erdős, P., Szekeres, G.: A Combinatorial Problem in Geometry, pp. 49–56. Birkhäuser Boston, Boston (1987). https://doi.org/10.1007/978-0-8176-4842-8_3

  16. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting and packing cycles in subexponential time on unit disk graphs. CoRR abs/1704.07279 (2017). http://arxiv.org/abs/1704.07279

  17. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Proceedings of SODA 2012, pp. 1563–1575 (2012)

    Google Scholar 

  18. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp. 1161–1165 (2011). https://doi.org/10.1137/1.9781611973082.87

  19. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. CoRR abs/1302.7228 (2013). http://arxiv.org/abs/1302.7228

  20. Fox, J., Pach, J., Tóth, C.D.: A bipartite strengthening of the crossing lemma. J. Comb. Theory, Ser. B 100(1), 23–35 (2010). https://doi.org/10.1016/j.jctb.2009.03.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or L-contact graphs. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 172–184. SIAM (2018). https://doi.org/10.1137/1.9781611975031.12

  22. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of polygons. In: 30th Annual Symposium on Computational Geometry, SOCG 2014, Kyoto, Japan, 08–11 June 2014, p. 120 (2014). https://doi.org/10.1145/2582112.2582157

  23. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? In: Proceedings of FOCS 1998, pp. 653–662, November 1998

    Google Scholar 

  24. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). http://www.sciencedirect.com/science/article/pii/S0022000000917276

  25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/jcss.2001.1774

    Article  MathSciNet  MATH  Google Scholar 

  26. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. III. Addison-Wesley, Boston (1973)

    MATH  Google Scholar 

  27. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory, Ser. B 62(2), 289–315 (1994). http://www.sciencedirect.com/science/article/pii/S0095895684710719

  28. Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory, Ser. B 52(1), 67–78 (1991). https://doi.org/10.1016/0095-8956(91)90091-W

    Article  MathSciNet  MATH  Google Scholar 

  29. Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb. Theory, Ser. B 53(1), 1–4 (1991). https://doi.org/10.1016/0095-8956(91)90050-T

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, J.R.: Separators in region intersection graphs. CoRR abs/1608.01612 (2016). http://arxiv.org/abs/1608.01612

  31. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980). https://doi.org/10.1137/0209046

    Article  MathSciNet  MATH  Google Scholar 

  32. Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_14

    Chapter  MATH  Google Scholar 

  33. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

  34. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. CoRR abs/1504.05476 (2015). http://arxiv.org/abs/1504.05476

  35. Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). CoRR abs/1406.2636 (2014). http://arxiv.org/abs/1406.2636

  36. Matoušek, J.: Near-optimal separators in string graphs. Comb. Probab. Comput. 23(1), 135–139 (2014). https://doi.org/10.1017/S0963548313000400

    Article  MathSciNet  MATH  Google Scholar 

  37. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013). https://doi.org/10.1016/j.jctb.2012.09.004

    Article  MathSciNet  MATH  Google Scholar 

  38. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B 62(2), 323–348 (1994). https://doi.org/10.1006/jctb.1994.1073

    Article  MathSciNet  MATH  Google Scholar 

  39. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003). https://doi.org/10.1016/S0022-0000(03)00045-X

    Article  MathSciNet  MATH  Google Scholar 

  40. Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017). https://doi.org/10.1007/s00224-015-9662-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Scheinerman, E.: Intersection classes and multiple intersection parameters of graphs. Ph.D. thesis, Princeton University (1984)

    Google Scholar 

  42. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: Proceedings of FOCS 1998, pp. 232–243. IEEE Computer Society, Washington, DC (1998). http://dl.acm.org/citation.cfm?id=795664.796397

  43. Zverovich, I.E., Zverovich, V.E.: An induced subgraph characterization of domination perfect graphs. J. Graph Theory 20(3), 375–395 (1995). https://doi.org/10.1002/jgt.3190200313

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Rzążewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnet, É., Rzążewski, P. (2018). Optimality Program in Segment and String Graphs. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics