Advertisement

Optimality Program in Segment and String Graphs

  • Édouard Bonnet
  • Paweł RzążewskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11159)

Abstract

Planar graphs are known to allow subexponential algorithms running in time \(2^{O(\sqrt{n})}\) or \(2^{O(\sqrt{n} \log n)}\) for most of the paradigmatic problems, while the brute-force time \(2^{\varTheta (n)}\) is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in \(2^{O(n^{2/3}\log n)}\) by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which problems have no such algorithms under the ETH (Exponential Time Hypothesis). Among our results, we show that, quite surprisingly, 3-Coloring can also be solved in time \(2^{O(n^{2/3}\log ^{O(1)}n)}\) on string graphs while an algorithm running in time \(2^{o(n)}\) for 4-Coloring even on axis-parallel segments (of unbounded length) would disprove the ETH. For 4-Coloring of unit segments, we show a weaker lower bound, excluding a \(2^{o(n^{2/3})}\) algorithm (under the ETH). The construction exploits the celebrated Erdős-Szekeres theorem. The subexponential running time also carries over to Min Feedback Vertex Set, but not to Min Dominating Set and Min Independent Dominating Set.

References

  1. 1.
    Adamaszek, A., Har-Peled, S., Wiese, A.: Approximation schemes for independent set and sparse subsets of polygons. CoRR abs/1703.04758 (2017). http://arxiv.org/abs/1703.04758
  2. 2.
    Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of polygons with polylogarithmically many vertices. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp. 645–656 (2014).  https://doi.org/10.1137/1.9781611973402.49
  3. 3.
    Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994).  https://doi.org/10.1145/174644.174650MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biró, C., Bonnet, É., Marx, D., Miltzow, T., Rzążewski, P.: Fine-grained complexity of coloring unit disks and balls. In: 33rd International Symposium on Computational Geometry, SoCG 2017, 4–7 July 2017, Brisbane, Australia, pp. 18:1–18:16 (2017).  https://doi.org/10.4230/LIPIcs.SoCG.2017.18
  6. 6.
    Bonnet, É., Rzążewski, P.: Optimality program in segment and string graphs. CoRR abs/1712.08907 (2017). http://arxiv.org/abs/1712.08907
  7. 7.
    Boyer, J.M., Myrvold, W.J.: On the cutting edge: simplified o(n) planarity by edge addition. J. Graph Algorithms Appl. 8(2), 241–273 (2004). http://jgaa.info/accepted/2004/BoyerMyrvold2004.8.3.pdf
  8. 8.
    Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. Discret. Comput. Geom. 50(3), 771–783 (2013).  https://doi.org/10.1007/s00454-013-9538-5MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May - 2 June 2009, pp. 631–638 (2009).  https://doi.org/10.1145/1536414.1536500
  10. 10.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Bidimensional parameters and local treewidth. SIAM J. Discret. Math. 18(3), 501–511 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and \({H}\)-minor-free graphs. J. ACM 52(6), 866–893 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Demaine, E.D., Hajiaghayi, M.T.: Fast algorithms for hard graph problems: bidimensionality, minors, and local treewidth. In: Proceedings of GD 2014, pp. 517–533 (2004)Google Scholar
  13. 13.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)CrossRefGoogle Scholar
  14. 14.
    Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with applications through bidimensionality. Combinatorica 28(1), 19–36 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Erdős, P., Szekeres, G.: A Combinatorial Problem in Geometry, pp. 49–56. Birkhäuser Boston, Boston (1987).  https://doi.org/10.1007/978-0-8176-4842-8_3
  16. 16.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting and packing cycles in subexponential time on unit disk graphs. CoRR abs/1704.07279 (2017). http://arxiv.org/abs/1704.07279
  17. 17.
    Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Proceedings of SODA 2012, pp. 1563–1575 (2012)Google Scholar
  18. 18.
    Fox, J., Pach, J.: Computing the independence number of intersection graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 January 2011, pp. 1161–1165 (2011).  https://doi.org/10.1137/1.9781611973082.87
  19. 19.
    Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. CoRR abs/1302.7228 (2013). http://arxiv.org/abs/1302.7228
  20. 20.
    Fox, J., Pach, J., Tóth, C.D.: A bipartite strengthening of the crossing lemma. J. Comb. Theory, Ser. B 100(1), 23–35 (2010).  https://doi.org/10.1016/j.jctb.2009.03.005MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gonçalves, D., Isenmann, L., Pennarun, C.: Planar Graphs as L-intersection or L-contact graphs. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 172–184. SIAM (2018).  https://doi.org/10.1137/1.9781611975031.12
  22. 22.
    Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of polygons. In: 30th Annual Symposium on Computational Geometry, SOCG 2014, Kyoto, Japan, 08–11 June 2014, p. 120 (2014).  https://doi.org/10.1145/2582112.2582157
  23. 23.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? In: Proceedings of FOCS 1998, pp. 653–662, November 1998Google Scholar
  24. 24.
    Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). http://www.sciencedirect.com/science/article/pii/S0022000000917276
  25. 25.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001).  https://doi.org/10.1006/jcss.2001.1774MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. III. Addison-Wesley, Boston (1973)zbMATHGoogle Scholar
  27. 27.
    Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theory, Ser. B 62(2), 289–315 (1994). http://www.sciencedirect.com/science/article/pii/S0095895684710719
  28. 28.
    Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Comb. Theory, Ser. B 52(1), 67–78 (1991).  https://doi.org/10.1016/0095-8956(91)90091-WMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb. Theory, Ser. B 53(1), 1–4 (1991).  https://doi.org/10.1016/0095-8956(91)90050-TMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lee, J.R.: Separators in region intersection graphs. CoRR abs/1608.01612 (2016). http://arxiv.org/abs/1608.01612
  31. 31.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980).  https://doi.org/10.1137/0209046MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006).  https://doi.org/10.1007/11847250_14CrossRefzbMATHGoogle Scholar
  33. 33.
    Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48350-3_72CrossRefzbMATHGoogle Scholar
  34. 34.
    Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. CoRR abs/1504.05476 (2015). http://arxiv.org/abs/1504.05476
  35. 35.
    Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). CoRR abs/1406.2636 (2014). http://arxiv.org/abs/1406.2636
  36. 36.
    Matoušek, J.: Near-optimal separators in string graphs. Comb. Probab. Comput. 23(1), 135–139 (2014).  https://doi.org/10.1017/S0963548313000400MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J. Comb. Theory, Ser. B 103(1), 114–143 (2013).  https://doi.org/10.1016/j.jctb.2012.09.004MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B 62(2), 323–348 (1994).  https://doi.org/10.1006/jctb.1994.1073MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003).  https://doi.org/10.1016/S0022-0000(03)00045-XMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Schaefer, M., Štefankovič, D.: Fixed points, nash equilibria, and the existential theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017).  https://doi.org/10.1007/s00224-015-9662-0MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Scheinerman, E.: Intersection classes and multiple intersection parameters of graphs. Ph.D. thesis, Princeton University (1984)Google Scholar
  42. 42.
    Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: Proceedings of FOCS 1998, pp. 232–243. IEEE Computer Society, Washington, DC (1998). http://dl.acm.org/citation.cfm?id=795664.796397
  43. 43.
    Zverovich, I.E., Zverovich, V.E.: An induced subgraph characterization of domination perfect graphs. J. Graph Theory 20(3), 375–395 (1995).  https://doi.org/10.1002/jgt.3190200313MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.ENS Lyon, LIPLyonFrance
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations