Skip to main content

Construction and Local Routing for Angle-Monotone Graphs

  • Conference paper
  • First Online:
  • 511 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Abstract

A geometric graph in the plane is angle-monotone of width \(\gamma \) if every pair of vertices is connected by an angle-monotone path of width \(\gamma \), a path such that the angles of any two edges in the path differ by at most \(\gamma \). Angle-monotone graphs have good spanning properties.

We prove that every point set in the plane admits an angle-monotone graph of width \(90^\circ \), hence with spanning ratio \(\sqrt{2}\), and a subquadratic number of edges. This answers an open question posed by Dehkordi, Frati and Gudmundsson.

We show how to construct, for any point set of size n and any angle \(\alpha \), \(0< \alpha < 45^\circ \), an angle-monotone graph of width \((90^\circ +\alpha )\) with \(O(\frac{n}{\alpha })\) edges. Furthermore, we give a local routing algorithm to find angle-monotone paths of width \((90^\circ +\alpha )\) in these graphs. The routing ratio, which is the ratio of path length to Euclidean distance, is at most \(1/\cos (45^\circ + \frac{\alpha }{2})\), i.e., ranging from \(\sqrt{2} \approx 1.414\) to 2.613. For the special case \(\alpha = 30^\circ \), we obtain the \(\varTheta _6\)-graph and our routing algorithm achieves the known routing ratio 2 while finding angle-monotone paths of width \(120^\circ \).

This work is partially supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_23

    Chapter  Google Scholar 

  2. Bahoo, Y., Durocher, S., Mehrpour, S., Mondal, D.: Exploring increasing-chord paths and trees. In: Proceedings of the 29th Canadian Conference on Computational Geometry. CCCG (2017)

    Google Scholar 

  3. Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., Verdonschot, S.: Gabriel triangulations and angle-monotone graphs: local routing and recognition. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 519–531. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_40

    Chapter  MATH  Google Scholar 

  4. Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_25

    Chapter  Google Scholar 

  5. Bose, P., Carmi, P., Collette, S., Smid, M.H.M.: On the stretch factor of convex Delaunay graphs. J. Comput. Geom. 1(1), 41–56 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bose, P., Carufel, J.D., Morin, P., van Renssen, A., Verdonschot, S.: Towards tight bounds on theta-graphs: more is not always better. Theor. Comput. Sci. 616, 70–93 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput. 44(6), 1626–1649 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chew, L.P.: There is a planar graph almost as good as the complete graph. In: Proceedings of the 2nd Annual Symposium on Computational Geometry (SoCG), pp. 169–177 (1986)

    Google Scholar 

  9. Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. 19(2), 761–778 (2015)

    Article  MathSciNet  Google Scholar 

  10. Erdös, P., Szekeres, G.: A combinatorial theorem in geometry. Compos. Math. 2, 463–470 (1935)

    MATH  Google Scholar 

  11. Lubiw, A., Mondal, D.: Construction and local routing for angle-monotone graphs (2015). https://arxiv.org/abs/1801.06290

  12. Lubiw, A., O’Rourke, J.: Angle-monotone paths in non-obtuse triangulations. In: Proceedings of the 29th Canadian Conference on Computational Geometry. CCCG (2017)

    Google Scholar 

  13. Mastakas, K., Symvonis, A.: On the construction of increasing-chord graphs on convex point sets. In: Proceedings of the 6th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6. IEEE (2015)

    Google Scholar 

  14. Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. J. Comput. Geom. 7(1), 47–69 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Philos. Soc. 115, 1–12 (1994)

    Article  MathSciNet  Google Scholar 

  16. Urabe, M.: On a partition into convex polygons. Discret. Appl. Math. 64(2), 179–191 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lubiw, A., Mondal, D. (2018). Construction and Local Routing for Angle-Monotone Graphs. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics