Advertisement

On Weak Isomorphism of Rooted Vertex-Colored Graphs

Conference paper
  • 362 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11159)

Abstract

In this work we consider a notion of isomorphism of rooted vertex-colored graphs which allows not only vertices, but also colors to be permuted. Here, a prospective color permutation must be chosen from a group specified at the input. We call this notion weak isomorphism. It turns out that already for severely restricted classes of graphs, the corresponding weak graph isomorphism problem is as hard as the well studied string isomorphism problem. Our main result states that weak isomorphism can be solved in FPT time when simultaneously parameterized by three graph invariants: maximum degree, BFS color number, and BFS width. Intuitively, the second parameter quantifies the number of colors that cross a level of a breadth first search (BFS) tree of the corresponding graph. The third parameter is a width measure based on a BFS-based decomposition introduced independently by Yamazaki et al. [Algorithmica ’99] and by Chepoi and Dragan [Eur. J. Comb. ’00]. We show that the resulting parameterized problem has close relations to the notion of (strong) isomorphism of bounded color class hypergraphs. Our algorithm can be used to solve the latter problem in FPT time. Another consequence is that isomorphism of hypergraphs implicitly represented by ordered decision diagrams (ODD’s) can be solved in FPT time if the width of the involved ODD’s is an additional parameter.

Keywords

Weak Graph Isomorphism Implicit hypergraph representation Fixed-parameter tractability 

Notes

Acknowledgements

We would like to thank Daniel Lokshtanov for helpful discussions and Laszlo Babai for clarifying many aspects of his algorithm during a workshop on Symmetry in Finite and Infinite Structures.

References

  1. 1.
    Arvind, V., Das, B., Köbler, J., Toda, S.: Colored hypergraph isomorphism is fixed parameter tractable. Algorithmica 71, 120–138 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: STOC, pp. 684–697. ACM (2016)Google Scholar
  3. 3.
    Babai, L., Grigoryev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: STOC, pp. 310–324. ACM (1982)Google Scholar
  4. 4.
    Babai, L., Kantor, W.M., Luks, E.M.: Computational complexity and the classification of finite simple groups. In: FOCS, pp. 162–171. IEEE (1983)Google Scholar
  5. 5.
    Bollig, B.: On symbolic obdd-based algorithms for the minimum spanning tree problem. Theor. Comput. Sci. 447, 2–12 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bollig, B., Bury, M.: On the OBDD representation of some graph classes. Discret. Appl. Math. 214, 34–53 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bollig, B., Pröger, T.: On efficient implicit obdd-based algorithms for maximal matchings. Inf. Comput. 239, 29–43 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomorphism. Computer Science Department, Univ. Waterloo (1979)Google Scholar
  9. 9.
    Chepoi, V., Dragan, F.: A note on distance approximating trees in graphs. Eur. J. Combin. 21(6), 761–766 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Fundamentals of Paramterized Complexity. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5559-1CrossRefzbMATHGoogle Scholar
  11. 11.
    Furst, M., Hopcroft, J., Luks, E.: Polynomial-time algorithms for permutation groups. In: FOCS, pp. 36–41. IEEE (1980)Google Scholar
  12. 12.
    Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59(5), 27 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Grohe, M., Marx, D.: Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comp. 44(1), 114–159 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: FOCS, pp. 1010–1029. IEEE (2015)Google Scholar
  15. 15.
    Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13731-0_9CrossRefGoogle Scholar
  16. 16.
    Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In: FOCS, pp. 186–195. IEEE (2014)Google Scholar
  17. 17.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Miller, G.: Isomorphism testing for graphs of bounded genus. In: STOC, pp. 225–235. ACM (1980)Google Scholar
  19. 19.
    Nunkesser, R., Woelfel, P.: Representation of graphs by OBDDs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1132–1142. Springer, Heidelberg (2005).  https://doi.org/10.1007/11602613_112CrossRefGoogle Scholar
  20. 20.
    Sawitzki, D.: A symbolic approach to the all-pairs shortest-paths problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 154–167. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30559-0_13CrossRefGoogle Scholar
  21. 21.
    Seress, A.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  22. 22.
    Sims, C.C.: Computational methods in the study of permutation groups. In: Computational Problems in Abstract Algebra, pp. 169–183 (1970)Google Scholar
  23. 23.
    Woelfel, P.: Symbolic topological sorting with OBDDs. J. Discret. Algorithms 4(1), 51–71 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24(2), 105–127 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of BergenBergenNorway

Personalised recommendations