Skip to main content

Checkable FPGA Design: Energy Consumption, Throughput and Trustworthiness

  • Chapter
  • First Online:
Green IT Engineering: Social, Business and Industrial Applications

Abstract

Green FPGA design represented in the directions of energy efficiency and safety which are tightly connected in the areas of critical application is considered. The array structures that are traditionally used in digital components of safety-related systems, reduce a checkability of circuits, creating a problem of the hidden faults which can be accumulated in a normal mode and reduce the fault tolerance of the circuit and safety of system in the emergency mode. Soft and cardinal ways of array structure reduction are offered. The soft way consists in development of the truncated arithmetical operations implementing into reduced array structures. The cardinal way consists in paralleling of calculations in serial codes with the use of bitwise pipelines. The comparative analysis in complexity, throughput and energy consumption of the iterative array and bitwise pipeline multiplier is executed experimentally with use of Altera Quartus II. Methods of on-line testing in checking of mantissas by inequalities are developed for the truncated operations. A method of increase in safety of FPGA circuits in opposition to accumulation of the hidden faults and a method of monitoring in integrity of FPGA project are suggested on the basis the program code diversity use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murugesan, S., Gangadharan, G.R.: Harnessing Green IT Principles and Practices. Wiley, UK (2012)

    Book  Google Scholar 

  2. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.): Green IT engineering: concepts, models, complex systems architectures, studies in systems, decision and control, vol. 74. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-44162-7

    Google Scholar 

  3. Yakovlev, A.: Energy-modulated computing. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition 2011 (DATE 2011), Grenoble, France, 1–6 (2011)

    Google Scholar 

  4. Maevsky, D.A., Maevskaya, E.J., Stetsuyk, E.D.: Evaluating the RAM energy consumption at the stage of software development. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds) Green IT Engineering Concepts, Models, Complex Systems Architectures. Studies in Systems, Decision and Control, vol. 74, pp. 101–121. Springer, Cham. (2017) https://doi.org/10.1007/978-3-319-44162-7_6

    Google Scholar 

  5. Kharchenko, V., Gorbenko, A., Sklyar, V., Phillips, C.: Green computing and communications in critical application domains: challenges and solutions. In: 9th International Conference on Digital Technologies (DT’2013), pp. 191–197. Zhilina, Slovak Republic (2013)

    Google Scholar 

  6. Maevsky, D.A., Maevskaya, E.J., Stetsuyk, E.D., Shapa L.N.: Malicious software effect on the mobile devices power consumption. In: Kharchenko V., Kondratenko Y., Kacprzyk J. (eds) Green IT Engineering: Components, Networks and Systems Implementation. Studies in Systems, Decision and Control, vol. 105, pp. 155–171. Springer, Cham. (2017) https://doi.org/10.1007/978-3-319-55595-9_8

    Chapter  Google Scholar 

  7. IEC 61508-1:2010. Functional Safety of Electrical/Electronic/Programmable Electronic Safety Related Systems—Part 1: General requirements. Geneva: International Electrotechnical Commission (2010)

    Google Scholar 

  8. Bakhmach, E., Kharchenko, V., Siora, A., Sklyar, V., Tokarev, V.: Design and qualification of I&C systems on the basis of FPGA technologies. In: Proceedings of 7th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC&HMIT 2010), pp. 916–924. Las Vegas, Nevada (2010)

    Google Scholar 

  9. Drozd, J., Drozd, A., Antoshchuk, S.: Green IT engineering in the view of resource-based approach. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, vol. 74, pp. 43–65. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-44162-7_3

    Google Scholar 

  10. Drozd, J., Drozd, A., Antoshchuk, S., Kushnerov, A., Nikul, V.: Effectiveness of matrix and pipeline FPGA-based arithmetic components of safety-related systems. In: 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 785–789. Warsaw, Poland (2015). https://doi.org/10.1109/idaacs.2015.7341410

  11. Palagin, A.V., Opanasenko, V.N., Kryvyi, S.L.: Resource and energy optimization oriented development of FPGA-based adaptive logical networks for classification problem. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Components, Networks and Systems Implementation, vol. 105, pp. 195–218. Springer, Heidelberg (2017)

    Chapter  Google Scholar 

  12. Melnik, A.O.: Architecture of Computer. Volinska oblasna drukarnja, Lutsk, Ukraine (2008) (Ukrainian)

    Google Scholar 

  13. Shum, W., Anderson, J.H.: FPGA glitch power analysis and reduction. In: International Symposium on Low power electronics and design (ISLPED), pp. 27–32 (2011)

    Google Scholar 

  14. Vikas, D.: A review on glitch reduction techniques. Int. J. Res. Eng. Technol. 3(2), 145–148 (2014)

    Article  Google Scholar 

  15. Garofalo, V.: Truncated binary multipliers with minimum mean square error: analytical characterization, circuit implementation and applications. Ph.D. Dissertation, University of Studies of Naples “Federico II”, Naples, Italy (2008)

    Google Scholar 

  16. Kahan, W.: IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754, Elect. Eng. and Computer Science University of California, Berkeley CA 94720-1776 (1996)

    Google Scholar 

  17. Kondratenko, Y., Kondratenko, V.: Soft computing algorithm for arithmetic multiplication of fuzzy sets based on universal analytic models. In: Ermolayev, V. et al. (eds) Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science: ICTERI’2014, pp. 49–77. Springer, Switzerland (2014). https://doi.org/10.1007/978-3-319-13206-8_3

    Google Scholar 

  18. Cyclone II Architecture. Cyclone II Device Handbook Version 3.1. Altera Corporation (2007). http://www.altera.com/literature/hb/cyc2/cyc2_cii51002.pdf

  19. Drozd, A., Kharchenko, V., Antoshchuk, S., Sulima, J., Drozd, M.: Checkability of the digital components in safety-critical systems: problems and solutions. In: IEEE East-West Design & Test Symposium, Sevastopol, Ukraine, pp. 411–416 (2011). https://doi.org/10.1109/ewdts.2011.6116606

  20. Drozd, M., Drozd, A.: Safety-related instrumentation and control systems and a problem of the hidden faults. In: The 10th International Conference on Digital Technologies 2014, Zhilina, Slovak Republic, pp. 137–140 (2014). https://doi.org/10.1109/dt.2014.6868692

  21. Palagin, A.V., Opanasenko, V.N.: Design and application of the PLD-based reconfigurable devices. In: Adamski, M., Barkalov, A., Wegrzyn, M. (eds.) Design of Digital Systems and Devices. Lecture Notes in Electrical Engineering, vol. 79, pp. 59–91. Springer Verlag, Berlin Heidelberg (2011)

    Chapter  Google Scholar 

  22. Kondratenko, Y., Gordienko E.: Implementation of the neural networks for adaptive control system on FPGA. In: Katalinic, B. (ed.) Annals of DAAAM for 2012 and Proceeding of the 23th Int. DAAAM Symp “Intelligent Manufacturing and Automation”, vol. 23, No. 1. Published by DAAAM International, pp. 389–392, Vienna, Austria, EU (2012)

    Google Scholar 

  23. Drozd, A., Drozd, M., Kuznietsov, M.: Use of natural LUT redundancy to improve trustworthiness of FPGA design. CEUR Workshop Proceedings 1614, 322–331 (2016)

    Google Scholar 

  24. Design Optimization for Altera Devices. Qii52005-2.0. Quartus II Handbook, vol. 2. Altera Corporation (2004)

    Google Scholar 

  25. PowerPlay Early Power Estimator. User Guide. Altera Corporation (2013)

    Google Scholar 

  26. PowerPlay Power Analysis. Quartus II Handbook Version 13.1.0. Altera Corporation (2013). http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

  27. Using TimeQuest Timing Analyzer. Altera Corporation—University Program (2013). http://altera.com/up/pub/Intel_Material/13.0/Tutorials/Timequest.pdf

  28. Drozd, A., Antoshchuk, S.: New on-line testing methods for approximate data processing in the computing circuits. In: 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Prague, Czech Republic, pp. 291–294 (2011). https://doi.org/10.1109/idaacs.2011.6072759

  29. Kekre, H.B., Mishra, D., Khanna, R., Khanna, S., Hussaini, A.: Comparison between the basic LSB replacement technique and increased capacity of information hiding in LSB’s method for images. Int. J. Comput. Appl. 45(1), 33–38 (2012)

    Google Scholar 

  30. Drozd, A.V., Lobachev, M.V., Hassonah, W.: Hardware check of arithmetic devices with abridged execution of operations. In: the European Design and Test Conference (ED & TC 96), Paris, France, p. 611 (1996)

    Google Scholar 

  31. Yatskiv, V., Tsavolyk, T., Zhengbing, H.: Multiple error detection and correction based on modular arithmetic correcting codes. In: 8-th 2015 IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, IDAACS’2015, Warszawa, Poland, pp. 850–854 (2015)

    Google Scholar 

  32. ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic (1985)

    Google Scholar 

  33. IEEE Std 754™-2008 (Revision of IEEE Std 754-1985) IEEE Standard for Floating-Point Arithmetic. IEEE 3 Park Avenue New York, NY 10016–5997, USA (2008)

    Google Scholar 

  34. Vacca, J.: Computer and Information Security Handbook, 2nd edn. Morgan Kaufmann, Waltham, Mass (2013)

    Google Scholar 

  35. Schneier, B., Kohno, T., Ferguson, N.: Cryptography Engineering. Wiley, Hoboken, N.J. (2013)

    Google Scholar 

  36. Cox, I., Miller, M., Bloom, J., Fridrich, J.: Digital Watermarking and Steganography. Morgan Kaufmann Publishers, Amsterdam (2008)

    Google Scholar 

  37. Fridrich, J.: Steganography in Digital Media. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  38. Cyclone FPGA Family Data Sheet. Altera Corporation (2003). http://www.altera.com

  39. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.): Green IT Engineering: Components, Networks and Systems Implementation, Studies in Systems, Decision and Control, vol. 105. Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-319-55595-9_11

    Chapter  Google Scholar 

  40. Drozd, O., Al-dhabi, M., Antoshchuk, S., Martinyuk, A., Drozd, M.: Models and methods checking mantissas by inequalities for on-line testing of digital circuits in critical. In: Proceedings of IEEE East–West Design and Test Symposium, Novi Sad, Serbia, pp. 79–83 (2017)

    Google Scholar 

  41. Delphi 10 Seattle: Embarcadero (2015). https://www.embarcadero.com/ru/products/delphi

  42. Huffmire, T.: Handbook of FPGA Design Security. Springer, Dordrecht (2013)

    Google Scholar 

  43. Fridrich, J., Goljan, M., Du, R.: Lossless data embedding—new paradigm in digital watermarking. EURASIP J. Adv. Sig. Process 185–196 (2002)

    Google Scholar 

  44. Goljan, M., Fridrich, J., Du, R.: Distortion-free data embedding for images. In: Proceedings of the 4th International Workshop on Information Hiding (IHW-01), USA, Pittsburg, pp. 27–41 (2001)

    Google Scholar 

  45. Zashcholkin, K., Ivanova, O.: The control technology of integrity and legitimacy of LUT-oriented information object usage by self-recovering digital watermark. CEUR Workshop Proc 1356, 498–506 (2015)

    Google Scholar 

  46. Salomon, D., Motta, G.: Handbook of Data Compression. Springer, London (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Drozd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drozd, A. et al. (2019). Checkable FPGA Design: Energy Consumption, Throughput and Trustworthiness. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds) Green IT Engineering: Social, Business and Industrial Applications. Studies in Systems, Decision and Control, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-030-00253-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00253-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00252-7

  • Online ISBN: 978-3-030-00253-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics