Revisiting MU-Puzzle. A Case Study in Finite Countermodels Verification

  • Alexei LisitsaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11123)


In this paper we consider well-known MU puzzle from Goedel, Escher, Bach: An Eternal Golden Braid book by D. Hofstadter, as an infinite state safety verification problem for string rewriting systems. We demonstrate fully automated solution using finite countermodels method (FCM). We highlight advantages of FCM method and compare it with alternatives methods using regular invariants.


  1. 1.
    Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer, Heidelberg (2004). Scholar
  2. 2.
    Clarke, E.M., et al.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Goubault-Larrecq, J.: Finite models for formal security proofs. J. Comput. Secur. 18(6), 1247–1299 (2010)CrossRefGoogle Scholar
  4. 4.
    Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden Braid. Basic Books Inc., New York (1979)zbMATHGoogle Scholar
  5. 5.
    Jürjens, J., Weber, T.: Finite models in FOL-based crypto-protocol verification. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 155–172. Springer, Heidelberg (2009). Scholar
  6. 6.
    Lallement, G.: Semigroups and Combinatorial Applications. Wiley, Hoboken (1979)zbMATHGoogle Scholar
  7. 7.
    Lisitsa, A.: Finite models vs tree automata in safety verification. In: 23rd International Conference on Rewriting Techniques and Applications, RTA 2012, Nagoya, Japan, pp. 225–239, 28 May–2 June 2012Google Scholar
  8. 8.
    Lisitsa, A.: Finite reasons for safety - parameterized verification by finite model finding. J. Autom. Reason. 51(4), 431–451 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    McCune, W.: Prover9 and Mace4 (2005–2010).
  10. 10.
    Selinger, P.: Models for an adversary-centric protocol logic. Electron. Notes Theor. Comput. Sci. 55(1), 69–84 (2003). LACPV 2001, Logical Aspects of Cryptographic Protocol Verification (in connection with CAV 2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Swanson, L., McEliece, R.J.: A simple decision procedure for Hofstadter’s MIU-system. Math. Intell. 10(2), 48–49 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations