Skip to main content

Reachability Analysis of Nonlinear ODEs Using Polytopic Based Validated Runge-Kutta

  • Conference paper
  • First Online:
Reachability Problems (RP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11123))

Included in the following conference series:


Ordinary Differential Equations (ODEs) are a general form of differential equations. This mathematical format is often used to represent the dynamic behavior of physical systems such as control systems and chemical processes. Linear ODEs can usually be solved analytically while nonlinear ODEs may need numerical methods to obtain approximate solutions. There are also various developments for validated simulation of nonlinear ODEs such as explicit and implicit guaranteed Runge-Kutta integration schemes. The implicit ones are mainly based on zonotopic computations using affine arithmetics. It allows to compute the reachability of a nonlinear ODE with a zonotopic set as its initial value. In this paper, we propose a new validated approach to solve nonlinear ODEs with a polytopic set as the initial value using an indirectly implemented polytopic set computation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Alexandre dit Sandretto, J., Chapoutot, A.: Validated explicit and implicit Runge-Kutta methods. Reliab. Comput. Electron. Ed. 22, 78–108 (2016)

    Google Scholar 

  2. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynamical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013).

    Chapter  Google Scholar 

  3. Bouissou, O., Goubault, E., Putot, S., Tekkal, K., Vedrine, F.: HybridFluctuat: a static analyzer of numerical programs within a continuous environment. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 620–626. Springer, Heidelberg (2009).

    Chapter  Google Scholar 

  4. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)

    Article  MathSciNet  Google Scholar 

  5. de Figueiredo, L.H., Stolfi, J.: Self-validated numerical methods and applications. In: Brazilian Mathematics Colloquium Monographs, IMPA/CNPq (1997)

    Google Scholar 

  6. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE for hybrid systems analysis by combining different enclosure methods. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187. Springer, Heidelberg (2011).

    Chapter  MATH  Google Scholar 

  7. Fukuda, K.: From the zonotope construction to the minkowski addition of convex polytopes. J. Symb. Comput. 38(4), 1261–1272 (2004). Symbolic Computation in Algebra and Geometry

    Article  MathSciNet  Google Scholar 

  8. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Heidelberg (2009).

    Book  MATH  Google Scholar 

  9. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech: hybrid systems analysis using interval numerical methods. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 130–144. Springer, Heidelberg (2000).

    Chapter  MATH  Google Scholar 

  10. Kvasnica, M., Grieder, P., Baotić, M.: Multi-Parametric Toolbox (MPT) (2004)

    Google Scholar 

  11. Lohner, R.J.: Enclosing the solutions of ordinary initial and boundary value problems. In: Computer Arithmetic, pp. 255–286 (1987)

    Google Scholar 

  12. Moore, R.: Interval Analysis. Prentice Hall, Upper Saddle River (1966)

    Google Scholar 

  13. Nedialkov, N.S., Jackson, K., Corliss, G.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comp. 105(1), 21–68 (1999)

    Article  MathSciNet  Google Scholar 

  14. Rump, S.M., Kashiwagi, M.: Implementation and improvements of affine arithmetic. In: Nonlinear Theory Applications, IEICE, vol. 6, no. 3, pp. 341–359 (2015)

    Google Scholar 

  15. Tucker, W.: A rigorous ode solver and smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    Article  MathSciNet  Google Scholar 

  16. Wan, J., Sharma, S., Sutton, R.: Guaranteed state estimation for nonlinear discrete-time systems via indirectly implemented polytopic set computation. IEEE Trans. Autom. Control (2019).

Download references


The second author was grateful for the financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant EP/R005532/1.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Julien Alexandre dit Sandretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandre dit Sandretto, J., Wan, J. (2018). Reachability Analysis of Nonlinear ODEs Using Polytopic Based Validated Runge-Kutta. In: Potapov, I., Reynier, PA. (eds) Reachability Problems. RP 2018. Lecture Notes in Computer Science(), vol 11123. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00249-7

  • Online ISBN: 978-3-030-00250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics