Advertisement

Formal Verification of a Programmable Hypersurface

  • Panagiotis Kouvaros
  • Dimitrios Kouzapas
  • Anna PhilippouEmail author
  • Julius Georgiou
  • Loukas Petrou
  • Andreas Pitsillides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11119)

Abstract

A metasurface is a surface that consists of artificial material, called metamaterial, with configurable electromagnetic properties. This paper presents work in progress on the design and formal verification of a programmable metasurface, the Hypersurface, as part of the requirements of the VISORSURF research program (HORIZON 2020 FET-OPEN). The Hypersurface design is concerned with the development of a network of switch controllers that are responsible for configuring the metamaterial. The design of the Hypersurface, however, has demanding requirements that need to be delivered within a context of limited resources. This paper shares the experience of a rigorous design procedure for the Hypersurface network, that involves iterations between designing a network and its protocols and the formal evaluation of each design. Formal evaluation has provided results that, so far, drive the development team in a more robust design and overall aid in reducing the cost of the Hypersurface manufacturing.

References

  1. 1.
    VisorSurf: a hardware platform for software-driven functional metasurfaces. http://www.visorsurf.eu/
  2. 2.
    Benini, L., DeMicheli, G.: Networks on chips: a new SoC paradigm. IEEE Comput. 35(1), 70–78 (2002)CrossRefGoogle Scholar
  3. 3.
    Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing protocols. J. ACM 49(4), 538–576 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bloem, R., et al.: Decidability of Parameterized Verification. Morgan and Claypool Publishers, San Rafael (2015)Google Scholar
  5. 5.
    Bulychev, P.E., et al.: UPPAAL-SMC: statistical model checking for priced timed automata. In: Proceedings of QAPL 2012, vol. 85. EPTCS, pp. 1–16 (2012)Google Scholar
  6. 6.
    Chawade, S., Gaikwad, M., Patrikar, R.: Review of XY routing algorithm for network-on-chip architecture. Int. J. Comput. Appl. 43, 20–23 (2012)Google Scholar
  7. 7.
    Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28644-8_18CrossRefGoogle Scholar
  8. 8.
    Dal Corso, A., Macedonio, D., Merro, M.: Statistical model checking of Ad Hoc routing protocols in lossy grid networks. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 112–126. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17524-9_9CrossRefGoogle Scholar
  9. 9.
    Dally, W.J., Towles, B.: Route packets, not wires: on-chip interconnection networks. In: Proceedings of DAC 2001, pp. 684–689. ACM (2001)Google Scholar
  10. 10.
    Dombrowski, C., Junges, S., Katoen, J., Gross, J.: Model-checking assisted protocol design for ultra-reliable low-latency wireless networks. In: Proceedings of SRDS 2016, pp. 307–316. IEEE Computer Society (2016)Google Scholar
  11. 11.
    Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28756-5_13CrossRefzbMATHGoogle Scholar
  12. 12.
    Höfner, P., Kamali, M.: Quantitative analysis of AODV and its variants on dynamic topologies using statistical model checking. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 121–136. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40229-6_9CrossRefGoogle Scholar
  13. 13.
    Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing protocols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 322–336. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38088-4_22CrossRefGoogle Scholar
  14. 14.
    Kouvaros, P., Lomuscio, A.: Parameterised verification for multi-agent systems. Artif. Intell. 234, 152–189 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, M., Zeng, Q., Jone, W.: DyXY: a proximity congestion-aware deadlock-free dynamic routing method for network on chip. In: Proceedings of DAC 2006, pp. 849–852. ACM (2006)Google Scholar
  16. 16.
    Maxemchuk, N.F.: Regular mesh topologies in local and metropolitan area networks. AT&T Tech. J. 64(7), 1659–1685 (1985)CrossRefGoogle Scholar
  17. 17.
    Patooghy, A., Miremadi, S.: XYX: a power and performance efficient fault- tolerant routing algorithm for network on chip. In: Proceedings of PDP 2009, pp. 245–251. IEEE Computer Society (2009)Google Scholar
  18. 18.
    Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and analyzer for probabilistic systems. In: Proceedings of QEST 2005, pp. 251–252. IEEE Computer Society (2005)Google Scholar
  19. 19.
    Wu, J.: A fault-tolerant and deadlock-free routing protocol in 2D meshes based on odd-even turn model. IEEE Trans. Comput. 52(9), 1154–1169 (2003)Google Scholar
  20. 20.
    Younes, H.S.: Verification and planning for stochastic processes with asynchrounous events. Ph.D. thesis, Carnegie Mellon University (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Panagiotis Kouvaros
    • 1
  • Dimitrios Kouzapas
    • 1
  • Anna Philippou
    • 1
    Email author
  • Julius Georgiou
    • 2
  • Loukas Petrou
    • 2
  • Andreas Pitsillides
    • 1
  1. 1.Department of Computer ScienceUniversity of CyprusNicosiaCyprus
  2. 2.Department of Electrical and Computer EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations