Revisiting Bounded Reachability Analysis of Timed Automata Based on MILP

  • Iulian OberEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11119)


We study the reduction of bounded reachability analysis of timed automata (TA) to a Mixed Integer Linear Programming (MILP) problem. While bounded model checking of timed automata has been explored in the literature based on the satisfiability of Boolean constraint formulas over linear arithmetic constraints verified using SAT Modulo Theory (SMT) solvers, the approach presented in this paper opens up the alternative of using MILP solvers. We present some preliminary results comparing the two approaches and provide ideas on how linear optimization can be useful for analyzing the behavior of TA. The results are supported by a prototype implementation which relies either on a MILP solver (Gurobi) or an SMT solver (MathSAT). Certain techniques for reducing the search space and improving the performance are also discussed.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded model checking for timed systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 243–259. Springer, Heidelberg (2002). Scholar
  3. 3.
    Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing UPPAAL over 15 years. Softw. Pract. Exper. 41(2), 133–142 (2011)CrossRefGoogle Scholar
  4. 4.
    Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998). Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999). Scholar
  6. 6.
    Bouyer, P.: Weighted timed automata: model-checking and games. Electron. Notes Theor. Comput. Sci. 158, 3–17 (2006). Proceedings of the 22nd Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXII)Google Scholar
  7. 7.
    Bozga, M., Graf, S., Mounier, L., Ober, I., Roux, J.-L., Vincent, D.: Timed extensions for SDL. In: Reed, R., Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 223–240. Springer, Heidelberg (2001). Scholar
  8. 8.
    Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer, Heidelberg (2004). Scholar
  9. 9.
    Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems using shallow synchronization. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE -2010. LNCS, vol. 6117, pp. 155–169. Springer, Heidelberg (2010). Scholar
  10. 10.
    Damm, W., Olderog, E.-R. (eds.): FTRTFT 2002. LNCS, vol. 2469. Springer, Heidelberg (2002). Scholar
  11. 11.
    David, A., Möller, M.O., Yi, W.: Formal verification of UML statecharts with real-time extensions. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 218–232. Springer, Heidelberg (2002). Scholar
  12. 12.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). Scholar
  13. 13.
    Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems. Electron. Notes Theor. Comput. Sci. 133, 119–137 (2005)CrossRefGoogle Scholar
  14. 14.
    Graf, S.: Expression of time and duration constraints in SDL. In: Sherratt, E. (ed.) SAM 2002. LNCS, vol. 2599, pp. 38–52. Springer, Heidelberg (2003). Scholar
  15. 15.
    Graf, S.: OMEGA: correct development of real time and embedded systems. Softw. Syst. Model. 7(2), 127–130 (2008)CrossRefGoogle Scholar
  16. 16.
    Gurobi Optimization Inc., Reference manual v. 7.5. Accessed on 8 June 2018
  17. 17.
    Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and collaborations. In: Damm and Olderog [10], pp. 395–416Google Scholar
  18. 18.
    Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J. Comput. 6, 271–298 (1999)Google Scholar
  19. 19.
    Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theor. Comput. Sci. 345(1), 27–59 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Malinowski, J., Niebert, P.: SAT based bounded model checking with partial order semantics for timed automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 405–419. Springer, Heidelberg (2010). Scholar
  21. 21.
    MathSAT 5. Accessed 8 June 2018
  22. 22.
    Möller, O.: CSMA/CD protocol specification (UPPAAL benchmark). Accessed 8 June 2018
  23. 23.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)CrossRefGoogle Scholar
  24. 24.
    Niebert, P., Mahfoudh, M., Asarin, E., Bozga, M., Maler, O., Jain, N.: Verification of timed automata via satisfiability checking. In: Damm and Olderog [10], pp. 225–244Google Scholar
  25. 25.
    M. Sorea. Bounded model checking for timed automata. Electron. Notes Theor. Comput. Sci. 68(5), 116–134 (2003). MTCS 2002, Models for Time-Critical Systems (CONCUR 2002 Satellite Workshop)Google Scholar
  26. 26.
    Wang, F.: Efficient verification of timed automata with BDD-like data structures. STTT 6(1), 77–97 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yovine, S.: KRONOS: A verification tool for real-time systems. STTT 1(1–2), 123–133 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Toulouse - IRITToulouseFrance

Personalised recommendations