Skip to main content

Cascade Gain Scheduling Control of Antagonistic Actuators Based on System Identification

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2018)

Abstract

This paper presents cascade control approach for simultaneous position and stiffness control of antagonistic actuators, which can be easily applied to other types of Variable Stiffness Actuators (VSA). The control design approach presented in this paper has two steps. The first step is tuning of inner loop PIDs for motor position control based on the second order dynamic model. The second step is adaptive controller design for fine tuning of system dynamics in different set points. Therefore, bank of controllers is formed and it is used to tune outer loop controllers’ for shaping position and stiffness references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hogan, N.: Impedance control: an approach to manipulation: Part I - Theory. J. Dyn. Syst. Measur. Control 107, 1–7 (1985)

    Article  Google Scholar 

  2. Hogan, N.: Impedance control: an approach to manipulation: Part II - Implementation. J. Dyn. Syst. Measur. Control 107, 8–16 (1985)

    Article  Google Scholar 

  3. Hogan, N.: Impedance control: an approach to manipulation: Part III - Applications. J. Dyn. Syst. Measur. Control 107, 17–24 (1985)

    Article  Google Scholar 

  4. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)

    Article  Google Scholar 

  5. Migliore, S.A., Brown, E.A., De Weerth, S.P.: Biologically inspired joint stiffness control. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2005), Barcelona, Spain, pp. 4519–4524, April 2005

    Google Scholar 

  6. Tasch, A.D.U.: A two-DOF manipulator with adjustable compliance capabilities and comparison with the human finger. J. Robot. Syst. 13(1), 25–34 (1996)

    Article  Google Scholar 

  7. Jovanović, K., Lukić, B., Potkonjak, V.: Feedback linearization for decoupled position/stiffness control of bidirectional antagonistic drives. Electr. Energetics 31(1), 51–61 (2018)

    Google Scholar 

  8. Jovanovic, K., Potkonjak, V., Holland, O.: Dynamic modelling of an anthropomimetic robot in contact tasks. Adv. Robot. 28(11), 793–806 (2014)

    Google Scholar 

  9. Potkonjak, V., Svetozarevic, B., Jovanovic, K., Holland, O.: The puller-follower control of compliant and noncompliant antagonistic tendon drives in robotic system. Int. J. Adv. Rob. Syst. 8, 143–155 (2012)

    Google Scholar 

  10. Lukic, B., Jovanovic, K., Rakic, A.: Realization and comparative analysis of coupled and decoupled control methods for bidirectional antagonistic drives: QBmove maker pro. In: The 3rd IcETRAN Conference, Zlatibor, Serbia, pp. RO1.1–1-6, June 2016

    Google Scholar 

  11. Lukic, B., Jovanovic, K.: Influence of mechanical characteristics of a compliant robot on cartesian impedance control design. In: The 2nd IcETRAN Conference, Silver Lake, Serbia, pp. ROI2.5–1-6, June 2015

    Google Scholar 

  12. Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  13. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design and Tunning, 2nd edn. ISBN 1-55617-516-7

    Google Scholar 

  14. Sekara, T.B., Matausek, M.R.: Optimization of PID controller based on maximization of the proportional gain under constraints on robustness and sensitivity to measurement noise. IEEE Trans. Autom. Control 54(1), 184–189 (2009)

    Article  MathSciNet  Google Scholar 

  15. Sekara, T.B., Matausek, M.R.: Revisiting the Ziegler-Nichols process dynamics characterization. J. Process Control 20(3), 360–363 (2010)

    Article  Google Scholar 

  16. Matausek, M.R., Sekara, T.B.: PID controller frequency-domain tuning for stable, integrating and unstable processes, including dead-time. J. Process Control 21(1), 17–27 (2010)

    Article  Google Scholar 

  17. Šekara, T.B., Trifunović, M.B., Govedarica, V.: Frequency domain design of a complex controller under constraints on robustness and sensitivity to measurement noise. Electronics 15(1), 40–44 (2011)

    Google Scholar 

Download references

Acknowledgment

This paper was partly funded by the Ministry of Education, Science and Technological Development, Republic of Serbia, under contract TR-35003 and TR-33020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Lukić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lukić, B., Jovanović, K., Šekara, T.B. (2019). Cascade Gain Scheduling Control of Antagonistic Actuators Based on System Identification. In: Aspragathos, N., Koustoumpardis, P., Moulianitis, V. (eds) Advances in Service and Industrial Robotics. RAAD 2018. Mechanisms and Machine Science, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-00232-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00232-9_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00231-2

  • Online ISBN: 978-3-030-00232-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics