Skip to main content

Comparison of Numerical Models Used for Automated Analysis of Mechanical Structures

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 859)

Abstract

Authors present the comparison of properties observed in numerical models, that were used to classify features of mechanical constructions. We use these models to detect similarities between mechanical designs and compare them on how well they quantify the description of the mechanical elements, and how they deal with arising challenges: multi-dimensionality of feature values, multiple classes of relations, data incompleteness and variability of format. The key conclusion here, is the ability of modern numerical models (i.e. ConvNet, CapsNet) to process information describing mechanical constructions, while including meaningful structural data in the calculations. Application of these models can provide direct assistance in the mechanical design process.

Keywords

  • Structure analysis
  • ConvNet
  • CapsNet

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00211-4_30
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00211-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Kacalak, W., Majewski, M.: New Intelligent interactive automated systems for design of machine elements and assemblies. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 115–122. Springer, Heidelberg (2012)

    Google Scholar 

  2. Kacalak, W., Majewski, M.: Interactive design of machine elements and assemblies. Arch. Mech. Technol. Autom. 34(3), 13–22 (2014)

    Google Scholar 

  3. Kacalak, W., Majewski, M., Tuchołka, A.: Intelligent assessment of structure correctness using antipatterns. In: International Conference on Computational Science and Computational Intelligence, pp. 559-564. IEEE Xplore Digital Library. IEEE (2015)

    Google Scholar 

  4. Kacalak, W., Majewski, M., Budniak, Z.: Intelligent automated design of machine components using antipatterns. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds.) Intelligent Data Engineering and Automated Learning. Lecture Notes in Computer Science, vol. 9375, pp. 248–255. Springer, Cham (2015)

    Google Scholar 

  5. Kacalak, W., Majewski, M., Stuart, K., Budniak, Z.: Interactive systems for designing machine elements and assemblies. Manag. Prod. Eng. Rev. 6(3), 21–34 (2015)

    Google Scholar 

  6. Kacalak, W., Majewski, M., Budniak, Z.: Worm gear drives with adjustable backlash. ASME J. Mech. Robot. 8(1), 014504 (2015). ASME Press

    CrossRef  Google Scholar 

  7. Kacalak, W., Majewski, M., Tuchołka, A.: A method of object-oriented symbolical description and evaluation of machine elements using antipatterns. J. Mach. Eng. 16(4), 46–69 (2016)

    Google Scholar 

  8. Kacalak W., Majewski M.: Interactive design of machine elements in uncertainty and unrepeatability. In: Manufacturing 2014: Contemporary Problems of Manufacturing and Production Management, pp. 57–64 (2016)

    Google Scholar 

  9. Kacalak W., Majewski M., Budniak Z.: Analysis of similarities between structural features of designed machine elements and corresponding antipatterns. In: Manufacturing 2014: Contemporary Problems of Manufacturing and Production Management, pp. 135–142 (2016)

    Google Scholar 

  10. Kacalak, W., Majewski, M., Budniak, Z.: Innovative design of non-backlash worm gear drives. Arch. Civ. Mech. Eng. 18(3), 983–999 (2018)

    CrossRef  Google Scholar 

  11. Majewski, M., Zurada, J.M.: Sentence recognition using artificial neural networks. Knowl. Based Syst. 21(7), 629–635 (2008)

    CrossRef  Google Scholar 

  12. McHenry, K., Bajcsy, P., (2008) An Overview of 3D Data Content, File Formats and Viewers, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, Technical report ISDA 08-002

    Google Scholar 

  13. Tuchołka, A., Majewski, M., Kacalak, W.: Object-oriented, symbolic notation for design features, relations and structures. Mach. Eng. 20(1), 112–120 (2015)

    Google Scholar 

  14. Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z.: A method for intelligent quality assessment of a gearbox using antipatterns and convolutional neural networks. In: Silhavy, R. (ed.) Artificial Intelligence and Algorithms in Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 764, pp. 57–68. Springer, Cham (2019)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Tuchołka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Tuchołka, A., Majewski, M., Kacalak, W., Budniak, Z. (2019). Comparison of Numerical Models Used for Automated Analysis of Mechanical Structures. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Computational and Statistical Methods in Intelligent Systems. CoMeSySo 2018. Advances in Intelligent Systems and Computing, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-030-00211-4_30

Download citation