Skip to main content

Fuzzy Type Powerset Operators and F-Transforms

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11144))

Abstract

We introduce two types of aggregation operators for lattice-valued fuzzy sets, called fuzzy type powerset operators and fuzzy type F-transforms, which are derived from classical powerset operators and F-transforms, respectively. We prove that, in contrast with classical powerset operators, fuzzy type powerset operators form a subclass of fuzzy type F-transforms. Some examples of fuzzy type powerset operators are presented.

This research was partially supported by the project GA18-06915S provided by the Grant Agency of the Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators, pp. 3–107. Physica-Verlag, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Dubois, E., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36, 85–121 (1985)

    Article  MathSciNet  Google Scholar 

  3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  4. Höhle, U.: Many Valued Topology and its Applications. Kluwer Academic Publishers, Boston (2001)

    Book  Google Scholar 

  5. Močkoř, J.: Closure theories of powerset theories. Tatra Mountains Math. Publ. 64, 101–126 (2015)

    Article  MathSciNet  Google Scholar 

  6. Močkoř, J.: Cut systems in sets with similarity relations. Fuzzy Sets Syst. 161, 3127–3140 (2010)

    Article  MathSciNet  Google Scholar 

  7. Močkoř, J.: Powerset operators of extensional fuzzy sets. Iran. J. Fuzzy Syst. 15(2), 143–163 (2017)

    MATH  Google Scholar 

  8. Močkoř, J., Holčapek, M.: Fuzzy objects in spaces with fuzzy partitions. Soft Comput. 21(24), 7269–7284 (2017)

    Article  Google Scholar 

  9. Močkoř, J.: Spaces with fuzzy partitions and fuzzy transform. Soft Comput. 21, 3479–3492 (2017)

    Article  Google Scholar 

  10. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Boston (1999)

    Book  Google Scholar 

  11. Perfilieva, I.: Fuzzy transforms and their applications to image compression. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 19–31. Springer, Heidelberg (2006). https://doi.org/10.1007/11676935_3

    Chapter  MATH  Google Scholar 

  12. Perfilieva, I.: Fuzzy transforms: a challenge to conventional transform. In: Hawkes, P.W. (ed.) Advances in Image and Electron Physics, vol. 147, pp. 137–196. Elsevies Acad. Press, San Diego (2007)

    Google Scholar 

  13. Perfilieva, I., Novak, V., Dvořak, A.: Fuzzy transforms in the analysis of data. Int. J. Approximate Reasoning 48, 36–46 (2008)

    Article  Google Scholar 

  14. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157, 993–1023 (2006)

    Article  MathSciNet  Google Scholar 

  15. Perfilieva, I., Singh, A.P., Tiwari, S.P.: On the relationship among \(F\)-transform, fuzzy rough set and fuzzy topology. In: Proceedings of IFSA-EUSFLAT, pp. 1324–1330. Atlantis Press, Amsterdam (2015)

    Google Scholar 

  16. Rodabaugh, S.E.: Powerset operator foundation for poslat fuzzy SST theories and topologies. In: Höhle, U., Rodabaugh, S.E. (eds.) Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook of Fuzzy Sets Series, vol. 3, pp. 91–116. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  17. Rodabaugh, S.E.: Relationship of algebraic theories to powerset theories and fuzzy topological theories for lattice-valued mathematics. Int. J. Math. Math. Sci. 2007, 1–71 (2007)

    Article  MathSciNet  Google Scholar 

  18. Solovyov, S.A.: Powerset oeprator foundations for catalg fuzzy set theories. Iran. J. Fuzzy Syst. 8(2), 1–46 (2001)

    MATH  Google Scholar 

  19. Takači, A.: General aggregation operators acting on fuzzy numbers induced by ordinary aggregation operators. Novi Sad J. Math. 33(2), 67–76 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Močkoř .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Močkoř, J. (2018). Fuzzy Type Powerset Operators and F-Transforms. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2018. Lecture Notes in Computer Science(), vol 11144. Springer, Cham. https://doi.org/10.1007/978-3-030-00202-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00202-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00201-5

  • Online ISBN: 978-3-030-00202-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics