Models of Timed Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11022)


This paper analyzes the use of models for timed systems, particularly cyber-physical systems, which mix timed behavior of physical subsystems with largely untimed behavior of software. It examines how models are used in engineering and science, showing that two complementary styles for using models lead to differing conclusions about how to approach the problem of modeling timed systems. The paper argues for an increased use of an engineering style of modeling, where models are more like specifications of desired behavior and less like descriptions of some preexisting system. Finally, it argues that in the engineering style of modeling, determinism is an extremely valuable property.


Modeling Real-time systems Determinism 



The author thanks David N. Jansen for very helpful suggestions.


  1. 1.
    Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 15–40. Springer, Heidelberg (2016). Scholar
  2. 2.
    Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley Series in Probability and Statistics. Wiley, Hoboken (1987)zbMATHGoogle Scholar
  3. 3.
    Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Requirements for hybrid cosimulation standards. In: Hybrid Systems: Computation and Control (HSCC) (2015).
  4. 4.
    Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, 2nd edn. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: OSDI (2012).
  6. 6.
    Earman, J.: A Primer on Determinism, The University of Ontario Series in Philosophy of Science, vol. 32. D. Reidel Publishing Company, Dordrecht (1986)Google Scholar
  7. 7.
    Edwards, S.A., Lee, E.A.: The case for the precision timed (PRET) machine. In: Design Automation Conference (DAC) (2007)Google Scholar
  8. 8.
    Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time software for cyber-physical systems. Proc. IEEE (Spec. Issue on CPS) 100(1), 45–59 (2012). Scholar
  9. 9.
    Eidson, J.C.: Measurement, Control, and Communication Using IEEE 1588. Springer, London (2006). Scholar
  10. 10.
    Eidson, J.C., Stanton, K.B.: Timing in cyber-physical systems: the last inch problem. In: IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), pp. 19–24. IEEE (2015).
  11. 11.
    Golomb, S.W.: Mathematical models: uses and limitations. IEEE Trans. Reliab. R–20(3), 130–131 (1971). Scholar
  12. 12.
    Kirner, R., Puschner, P.: Obstacles in worst-case execution time analysis. In: Symposium on Object Oriented Real-Time Distributed Computing (ISORC), pp. 333–339. IEEE (2008)Google Scholar
  13. 13.
    Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. IEEE 91(1), 112–126 (2003)CrossRefGoogle Scholar
  14. 14.
    Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. ACM Trans. Program. Lang. Syst. 6(2), 254–280 (1984)CrossRefGoogle Scholar
  15. 15.
    Lee, E.A.: Fundamental limits of cyber-physical systems modeling. ACM Trans. Cyber-Phys. Syst. 1(1), 26 (2016). Scholar
  16. 16.
    Lee, E.A.: What is real-time computing? A personal view. IEEE Des. Test 35(2), 64–72 (2018). Scholar
  17. 17.
    Lee, E.A., Reineke, J., Zimmer, M.: Abstract PRET machines. In: IEEE Real-Time Systems Symposium (RTSS) (2017). Invited TCRTS award paperGoogle Scholar
  18. 18.
    Lee, E.A.: Plato and the Nerd – The Creative Partnership of Humans and Technology. MIT Press, Cambridge (2017)Google Scholar
  19. 19.
    Muller, R.A.: Now – The Physics of Time. W. W. Norton and Company, New York (2016)Google Scholar
  20. 20.
    Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for next-generation systems. Computer 21(10), 10–19 (1988)CrossRefGoogle Scholar
  21. 21.
    Thiele, L., Kumar, P.: Can real-time systems be chaotic? In: EMSOFT, pp. 21–30. ACM (2015)Google Scholar
  22. 22.
    Wägemann, P., Distler, T., Eichler, C., Schröder-Preikschat, W.: Benchmark generation for timing analysis. In: Real-Time Embedded Technology and Applications Symposium (RTAS). IEEE (2017)Google Scholar
  23. 23.
    Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 1–53 (2008)CrossRefGoogle Scholar
  24. 24.
    Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized distributed real-time systems. In: Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 259–268. IEEE (2007).
  25. 25.
    Zimmer, M., Broman, D., Shaver, C., Lee, E.A.: FlexPRET: a processor platform for mixed-criticality systems. In: Real-Time and Embedded Technology and Application Symposium (RTAS) (2014).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.UC BerkeleyBerkeleyUSA

Personalised recommendations