Skip to main content

Non-bisimulation Based Behavioral Relations for Markov Automata

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11022))

Abstract

Markov automata (MAs) [16] extend probabilistic automata (PAs) [29] with stochastic aspects [22]. This paper defines two equivalence relations, namely, weighted Markovian equivalence (WME) and weak weighted Markovian equivalence (WWME) for the subclass of closed MAs. We define the quotient system under these relations and investigate their relationship with strong bisimulation and weak bisimulation, respectively. Next, we show that both WME and WWME can be used for repeated minimization of closed MAs. Finally, we prove that properties specified using deterministic timed automaton (DTA) specifications and metric temporal logic (MTL) formulas are preserved under WME and WWME quotienting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A MA is said to be closed if it is not subject to any further synchronization.

  2. 2.

    We restrict to models without zenoness. In simple words, this means that \(\tau \) cycles are not allowed.

  3. 3.

    Since our closed MA models do not allow multiple action transitions, schedulers are not required for resolving non-deterministic choices.

  4. 4.

    Note that the definition of strong bisimulation has been slightly modified to take into account the state labels.

  5. 5.

    For any MA \(\mathcal {M}\) and DTA \(\mathcal {A}\), the set \(Paths^{\mathcal {M}}(\mathcal {A})\) is measurable [11, 17, 33].

  6. 6.

    Note that paths satisfying an MTL formula \(\varphi \) can be written as a set of cylinder sets [33].

References

  1. Aldini, A., Bernardo, M.: Expected-delay-summing weak bisimilarity for Markov automata. In: QAPL, EPTCS, vol. 194, pp. 1–15 (2015)

    Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bernardo, M.: Non-bisimulation-based Markovian behavioral equivalences. J. Log. Algebr. Program. 72(1), 3–49 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bernardo, M.: Towards state space reduction based on t-lumpability-consistent relations. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 64–78. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87412-6_6

    Chapter  Google Scholar 

  5. Böde, E., et al.: Compositional dependability evaluation for STATEMATE. IEEE Trans. Softw. Eng. 35(2), 274–292 (2009)

    Article  Google Scholar 

  6. Boudali, H., Crouzen, P., Haverkort, B.R., Kuntz, M., Stoelinga, M.: Architectural dependability evaluation with arcade. In: DSN, pp. 512–521. IEEE Computer Society (2008)

    Google Scholar 

  7. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8_31

    Chapter  MATH  Google Scholar 

  8. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer Society (2007)

    Google Scholar 

  9. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris 7, Paris, France, January 2009

    Google Scholar 

  10. Bozzano, M., Cimatti, A., Katoen, J., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54(5), 754–775 (2011)

    Article  Google Scholar 

  11. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-time Markov chains against timed automata specifications. In: LICS, pp. 309–318 (2009)

    Google Scholar 

  12. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance prediction of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 204–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_18

    Chapter  Google Scholar 

  13. Deng, Y., Hennessy, M.: On the semantics of Markov automata. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 307–318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_24

    Chapter  MATH  Google Scholar 

  14. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222, 139–168 (2013)

    Article  MathSciNet  Google Scholar 

  15. Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Probabilistic bisimulation for realistic schedulers. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 248–264. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_16

    Chapter  Google Scholar 

  16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351 (2010)

    Google Scholar 

  17. Fu, H.: Approximating acceptance probabilities of CTMC-paths on multi-clock deterministic timed automata. In: HSCC, pp. 323–332. ACM (2013)

    Google Scholar 

  18. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_5

    Chapter  Google Scholar 

  19. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed and long-run objectives for Markov automata. LMCS 10(3), 1–29 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_13

    Chapter  MATH  Google Scholar 

  21. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. In: ECEASST, vol. 53 (2012)

    Google Scholar 

  22. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Quality. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2

    Book  MATH  Google Scholar 

  23. Hermanns, H., Katoen, J.-P.: The how and why of interactive Markov chains. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17071-3_16

    Chapter  MATH  Google Scholar 

  24. Hermanns, H., Katoen, J., Neuhäußer, M.R., Zhang, L.: GSPN model checking despite confusion. Technical report, RWTH Aachen University (2010)

    Google Scholar 

  25. Mateescu, R., Serwe, W.: A study of shared-memory mutual exclusion protocols using CADP. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 180–197. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15898-8_12

    Chapter  Google Scholar 

  26. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks: structure, behavior, and application. In: PNPM, pp. 106–115. IEEE Computer Society (1985)

    Google Scholar 

  27. Neuhäußer, M.R.: Model checking non-deterministic and randomly timed systems. Ph.D. dissertation, RWTH Aachen University (2010)

    Google Scholar 

  28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85778-5_1

    Chapter  Google Scholar 

  29. Segala, R.: Modelling and Verification of Randomized Distributed Real Time Systems. Ph.D. thesis, MIT (1995)

    Google Scholar 

  30. Sharma, A.: Reduction Techniques for Non-deterministic and Probabilistic Systems. Ph.D. dissertation, RWTH Aachen (2015)

    Google Scholar 

  31. Sharma, A.: Interactive Markovian equivalence. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497, pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66583-2_3

    Chapter  Google Scholar 

  32. Sharma, A.: Trace relations and logical preservation for Markov automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018, LNCS 11022, pp. 162–178. Springer, Cham (2018)

    Google Scholar 

  33. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 322–339. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29709-0_28

    Chapter  Google Scholar 

  34. Song, L., Zhang, L., Godskesen, J.C.: Late weak bisimulation for Markov automata. CoRR, abs/1202.4116 (2012)

    Google Scholar 

  35. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling and generation of Markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_26

    Chapter  Google Scholar 

  36. Wolf, V., Baier, C., Majster-Cederbaum, M.E.: Trace machines for observing continuous-time Markov chains. ENTCS 153(2), 259–277 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpit Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, A. (2018). Non-bisimulation Based Behavioral Relations for Markov Automata. In: Jansen, D., Prabhakar, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2018. Lecture Notes in Computer Science(), vol 11022. Springer, Cham. https://doi.org/10.1007/978-3-030-00151-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00151-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00150-6

  • Online ISBN: 978-3-030-00151-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics