Skip to main content

Magnetic Resonance Fingerprinting Reconstruction via Spatiotemporal Convolutional Neural Networks

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11074)

Abstract

Magnetic resonance fingerprinting (MRF) quantifies multiple nuclear magnetic resonance parameters in a single and fast acquisition. Standard MRF reconstructs parametric maps using dictionary matching, which lacks scalability due to computational inefficiency. We propose to perform MRF map reconstruction using a spatiotemporal convolutional neural network, which exploits the relationship between neighboring MRF signal evolutions to replace the dictionary matching. We evaluate our method on multiparametric brain scans and compare it to three recent MRF reconstruction approaches. Our method achieves state-of-the-art reconstruction accuracy and yields qualitatively more appealing maps compared to other reconstruction methods. In addition, the reconstruction time is significantly reduced compared to a dictionary-based approach.

Keywords

  • Magnetic resonance fingerprinting
  • Parameter mapping
  • Image reconstruction
  • Convolutional neural network

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00129-2_5
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00129-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Cao, X., et al.: Robust sliding-window reconstruction for accelerating the acquisition of MR fingerprinting. Magn. Reson. Med. 78(4), 1579–1588 (2017). https://doi.org/10.1002/mrm.26521

    CrossRef  Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2016). https://doi.org/10.1109/TPAMI.2017.2699184

    CrossRef  Google Scholar 

  3. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting deep reconstruction network (DRONE). Magnetic Reson. Med. 80(3), 885–894 (2018). https://doi.org/10.1002/mrm.27198

    CrossRef  Google Scholar 

  4. Gómez, P.A., et al.: Simultaneous parameter mapping, modality synthesis, and anatomical labeling of the brain with MR fingerprinting. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 579–586. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_67

    CrossRef  Google Scholar 

  5. Hoppe, E., et al.: Deep learning for magnetic resonance fingerprinting: a new approach for predicting quantitative parameter values from time series. In: Röhrig, R., Timmer, A., Binder, H., Sax, U. (eds.) German Medical Data Sciences: Visions and Bridges, Oldenburg, vol. 243, pp. 202–206 (2017). https://doi.org/10.3233/978-1-61499-808-2-202

  6. Ma, D., et al.: Magnetic resonance fingerprinting. Nature 495(7440), 187–192 (2013). https://doi.org/10.1038/nature11971

    CrossRef  Google Scholar 

  7. Shaik, I., et al.: Tailored magnetic resonance fingerprinting: optimizing acquisition schedule and intelligent reconstruction using a block approach. In: ISMRM 2018 (2018)

    Google Scholar 

  8. Wang, Z., Zhang, Q., Yuan, J., Wang, X.: MRF denoising with compressed sensing and adaptive filtering. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 870–873. IEEE, Beijing (2014). https://doi.org/10.1109/ISBI.2014.6868009

Download references

Acknowledgements

This research was supported by the Swiss Foundation for Research on Muscle Diseases (ssem), grant attributed to author OS. The authors thank the NVIDIA Corporation for their GPU donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Balsiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Balsiger, F. et al. (2018). Magnetic Resonance Fingerprinting Reconstruction via Spatiotemporal Convolutional Neural Networks. In: Knoll, F., Maier, A., Rueckert, D. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2018. Lecture Notes in Computer Science(), vol 11074. Springer, Cham. https://doi.org/10.1007/978-3-030-00129-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00129-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00128-5

  • Online ISBN: 978-3-030-00129-2

  • eBook Packages: Computer ScienceComputer Science (R0)