Cardiac MR Motion Artefact Correction from K-space Using Deep Learning-Based Reconstruction

  • Ilkay OksuzEmail author
  • James Clough
  • Aurelien Bustin
  • Gastao Cruz
  • Claudia Prieto
  • Rene Botnar
  • Daniel Rueckert
  • Julia A. Schnabel
  • Andrew P. King
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11074)


Incorrect ECG gating of cardiac magnetic resonance (CMR) acquisitions can lead to artefacts, which hampers the accuracy of diagnostic imaging. Therefore, there is a need for robust reconstruction methods to ensure high image quality. In this paper, we propose a method to automatically correct motion-related artefacts in CMR acquisitions during reconstruction from k-space data. Our method is based on the Automap reconstruction method, which directly reconstructs high quality MR images from k-space using deep learning. Our main methodological contribution is the addition of an adversarial element to this architecture, in which the quality of image reconstruction (the generator) is increased by using a discriminator. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted CMR k-space data and uncorrupted reconstructed images. Using 25000 images from the UK Biobank dataset we achieve good image quality in the presence of synthetic motion artefacts, but some structural information was lost. We quantitatively compare our method to a standard inverse Fourier reconstruction. In addition, we qualitatively evaluate the proposed technique using k-space data containing real motion artefacts.


Cardiac MR Image reconstruction Deep learning UK Biobank Image artefacts Image quality Automap 


This work was supported by an EPSRC programme Grant (EP/P001009/1) and the Wellcome EPSRC Centre for Medical Engineering at the School of Biomedical Engineering and Imaging Sciences, King’s College London (WT 203148/Z/16/Z). This research has been conducted using the UK Biobank Resource under Application Number 17806. The GPU used in this research was generously donated by the NVIDIA Corporation.


  1. 1.
    Adler, J., et al.: Learning to solve inverse problems using Wasserstein loss. arXiv:1710.10898 (2017)
  2. 2.
    Ferreira, P.F., et al.: Cardiovascular magnetic resonance artefacts. JCMR 15, 1–41 (2013)Google Scholar
  3. 3.
    Frogner, C., et al.: Learning with a Wasserstein loss. In: NIPS, pp. 2053–2061 (2015)Google Scholar
  4. 4.
    Han, Y., et al.: k-Space deep learning for accelerated MRI. arXiv:1805.03779 (2018)
  5. 5.
    Jin, K.H., et al.: Deep convolutional neural network for inverse problems in imaging. IEEE TIP 26(9), 4509–4522 (2017)MathSciNetGoogle Scholar
  6. 6.
    Kim, Y.C., et al.: Automatic correction of echoplanar imaging (EPI) ghosting artifacts in realtime interactive cardiac MRI using sensitivity encoding. JMRI 27(1), 239–245 (2008)CrossRefGoogle Scholar
  7. 7.
    Kwon, K., et al.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017)CrossRefGoogle Scholar
  8. 8.
    Lotjonen, J., et al.: Correction of motion artifacts from cardiac cine magnetic resonance images. Acad. Radiol. 12(10), 1273–1284 (2005)CrossRefGoogle Scholar
  9. 9.
    Lustig, M., et al.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)CrossRefGoogle Scholar
  10. 10.
    McCann, M.T., et al.: Convolutional neural networks for inverse problems in imaging: a review. IEEE Sig. Process. Mag. 34(6), 85–95 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Oksuz, I., et al.: Deep learning using K-space based data augmentation for automated cardiac MR motion artefact detection. In: MICCAI (2018)Google Scholar
  12. 12.
    Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. JCMR 18(1), 1–8 (2016)MathSciNetGoogle Scholar
  13. 13.
    Saremi, F., et al.: Optimizing cardiac MR imaging: practical remedies for artifacts. Radiographics 28(4), 1161–1187 (2008)CrossRefGoogle Scholar
  14. 14.
    Schlemper, J., et al.: A deep cascade of convolutional neural networks for MR image reconstruction. In: IPMI (2017)Google Scholar
  15. 15.
    Schlemper, J., et al.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE TMI 37(2), 491–503 (2018)Google Scholar
  16. 16.
    Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)MathSciNetGoogle Scholar
  17. 17.
    Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE TMI 37, 1310–1321 (2017)Google Scholar
  18. 18.
    Zhu, B., et al.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ilkay Oksuz
    • 1
    Email author
  • James Clough
    • 1
  • Aurelien Bustin
    • 1
  • Gastao Cruz
    • 1
  • Claudia Prieto
    • 1
  • Rene Botnar
    • 1
  • Daniel Rueckert
    • 2
  • Julia A. Schnabel
    • 1
  • Andrew P. King
    • 1
  1. 1.School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
  2. 2.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations